Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vriend, W. J.

  • Google
  • 3
  • 10
  • 545

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019The Role of the Euclid Archive System in the Processing of Euclid and External Datacitations
  • 2005Erratum: ``The Absence of Crystalline Silicates in the Diffuse Interstellar Medium'' (<A href="/abs/2004ApJ...609..826K">ApJ, 609, 826 [2004]</A>)96citations
  • 2004The Absence of Crystalline Silicates in the Diffuse Interstellar Medium449citations

Places of action

Chart of shared publication
Valentijn, Edwin
1 / 4 shared
Boxhoorn, D.
1 / 1 shared
Tsyganov, A.
1 / 1 shared
Droge, B.
1 / 1 shared
Williams, O. R.
1 / 1 shared
Mcfarland, J. P.
1 / 2 shared
Begeman, K.
1 / 2 shared
Dabin, C.
1 / 1 shared
Kemper, Francisca
2 / 6 shared
Tielens, A. G. G. M.
2 / 16 shared
Chart of publication period
2019
2005
2004

Co-Authors (by relevance)

  • Valentijn, Edwin
  • Boxhoorn, D.
  • Tsyganov, A.
  • Droge, B.
  • Williams, O. R.
  • Mcfarland, J. P.
  • Begeman, K.
  • Dabin, C.
  • Kemper, Francisca
  • Tielens, A. G. G. M.
OrganizationsLocationPeople

article

The Absence of Crystalline Silicates in the Diffuse Interstellar Medium

  • Kemper, Francisca
  • Tielens, A. G. G. M.
  • Vriend, W. J.
Abstract

Infrared spectroscopy provides a direct handle on the composition and structure of interstellar dust. We have studied the dust along the line of sight toward the Galactic center using Short Wavelength Spectrometer data obtained with the Infrared Space Observatory (ISO). We focused on the wavelength region from 8 to 13 μm, which is dominated by the strong silicate absorption feature. Using the absorption profiles observed toward Galactic center sources 3 and 4, which are C-rich Wolf-Rayet Stars, as reference objects, we are able to disentangle the interstellar silicate absorption and the silicate emission intrinsic to the source, toward Sgr A* and derive a very accurate profile for the intrinsic 9.7 μm band. The interstellar absorption band is smooth and featureless and is well reproduced using a mixture of 15.1% amorphous pyroxene and 84.9% of amorphous olivine by mass, all in spherical submicron-sized grains. There is no direct evidence for substructure due to interstellar crystalline silicates. By minimizing χ<SUP>2</SUP> of spectral fits to the absorption feature, we are able to determine an upper limit to the degree of crystallinity of silicates in the diffuse interstellar medium (ISM) and conclude that the crystalline fraction of the interstellar silicates is 0.2%+/-0.2% by mass. This is much lower than the degree of crystallinity observed in silicates in the circumstellar environment of evolved stars, the main contributors of dust to the ISM. There are two possible explanations for this discrepancy. First, an amorphization process occurs in the ISM on a timescale significantly shorter than the destruction timescale, possibly caused by particle bombardment by heavyweight ions. Second, we consider the possibility that the crystalline silicates in stellar ejecta are diluted by an additional source of amorphous silicates, in particular supernovae. We also compare our results with a study on silicate presolar grains found in interplanetary dust particles.Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

Topics
  • impedance spectroscopy
  • amorphous
  • grain
  • crystallinity
  • infrared spectroscopy