Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dwek, Eli

  • Google
  • 10
  • 15
  • 1143

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2021The infrared echo of SN2010jl and its implications for shock breakout characteristicscitations
  • 2016Dust destruction by the reverse shock in the Cassiopeia A supernova remnant88citations
  • 2015The Evolution of Dust Mass in the Ejecta of SN1987A67citations
  • 2013The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula72citations
  • 2012Properties and Spatial Distribution of Dust Emission in the Crab Nebula46citations
  • 2010The Chemistry of Population III Supernova Ejecta. II. The Nucleation of Molecular Clusters as a Diagnostic for Dust in the Early Universe138citations
  • 2004The Detection of Cold Dust in Cassiopeia A: Evidence for the Formation of Metallic Needles in the Ejecta52citations
  • 2004Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints589citations
  • 2003Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraintscitations
  • 2002The Zodiacal Emission Spectrum as Determined by COBE and Its Implications91citations

Places of action

Chart of shared publication
Sarangi, Arkaprabha
1 / 4 shared
Kazanas, Demos
1 / 1 shared
Fox, Ori D.
1 / 1 shared
Arendt, Richard G.
5 / 6 shared
Kallman, Timothy
1 / 1 shared
Slavin, Jonathan D.
1 / 1 shared
Micelotta, Elisabetta
1 / 1 shared
Temim, Tea
2 / 3 shared
Roellig, Thomas L.
1 / 2 shared
Gehrz, Robert D.
1 / 3 shared
Sonneborn, George
1 / 3 shared
Slane, Patrick
1 / 6 shared
Cherchneff, Isabelle
1 / 2 shared
Zubko, Viktor
2 / 2 shared
Fixsen, D. J.
1 / 2 shared
Chart of publication period
2021
2016
2015
2013
2012
2010
2004
2003
2002

Co-Authors (by relevance)

  • Sarangi, Arkaprabha
  • Kazanas, Demos
  • Fox, Ori D.
  • Arendt, Richard G.
  • Kallman, Timothy
  • Slavin, Jonathan D.
  • Micelotta, Elisabetta
  • Temim, Tea
  • Roellig, Thomas L.
  • Gehrz, Robert D.
  • Sonneborn, George
  • Slane, Patrick
  • Cherchneff, Isabelle
  • Zubko, Viktor
  • Fixsen, D. J.
OrganizationsLocationPeople

article

Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

  • Dwek, Eli
  • Arendt, Richard G.
  • Zubko, Viktor
Abstract

We present new interstellar dust models that have been derived by simultaneously fitting the far-ultraviolet to near-infrared extinction, the diffuse infrared (IR) emission and, unlike previous models, the elemental abundance constraints on the dust for different interstellar medium abundances, including solar, F and G star, and B star abundances. The fitting problem is a typical ill-posed inversion problem, in which the grain size distribution is the unknown, which we solve by using the method of regularization. The dust model contains various components: polycyclic aromatic hydrocarbons (PAHs), bare silicate, graphite, and amorphous carbon particles, as well as composite particles containing silicate, organic refractory material, water ice, and voids. The optical properties of these components were calculated using physical optical constants. As a special case, we reproduce the Li & Draine results; however, their model requires an excessive amount of silicon, magnesium, and iron to be locked up in dust: about 50 ppm (atoms per million of H atoms), significantly more than the upper limit imposed by solar abundances of these elements, about 34, 35, and 28 ppm, respectively. A major conclusion of this paper is that there is no unique interstellar dust model that simultaneously fits the observed extinction, diffuse IR emission, and abundance constraints. We find several classes of acceptable interstellar dust models that comply with these constraints. The first class is identical in composition to the Li & Draine model, consisting of PAHs, bare graphite and silicate grains, but with a different size distribution that is optimized to comply with the abundance constraints. The second class of models contains in addition to PAHs bare graphite and silicate grains also composite particles. Other classes contain amorphous carbon instead of graphite particles, or no carbon at all, except for that in PAHs. All classes are consistent with solar and F and G star abundances but have greater difficulty fitting the B star carbon abundance, which is better fitted with the latter (no carbon) models. Additional observational constraints, such as the interstellar polarization, or X-ray scattering may be able to discriminate between the various interstellar dust models.

Topics
  • impedance spectroscopy
  • amorphous
  • Carbon
  • grain
  • grain size
  • Magnesium
  • Magnesium
  • composite
  • Silicon
  • iron
  • void
  • refractory
  • X-ray scattering