People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
May, Pw
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Experimental studies of electron affinity and work function from titanium on oxidised diamond (100) surfacescitations
- 2019Ab initio study of negative electron affinity from light metals on the oxygen-terminated diamond (1 1 1) surfacecitations
- 2017Bosonic Confinement and Coherence in Disordered Nanodiamond Arrayscitations
- 2016Fast electron transfer kinetics on novel interconnected nanospheres of graphene layers electrodescitations
- 2015Photochemically modified diamond-like carbon surfaces for neural interfacescitations
- 2015High surface area diamond-like carbon electrodes grown on vertically aligned carbon nanotubescitations
- 2013Metal-Bosonic Insulator-Superconductor Transition in Boron-Doped Granular Diamondcitations
- 2010Simulations of CVD diamond film growth using a simplified Monte Carlo model
- 2008Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond filmscitations
Places of action
Organizations | Location | People |
---|
article
Experimental studies of electron affinity and work function from titanium on oxidised diamond (100) surfaces
Abstract
Sub-monolayers of titanium were deposited onto oxidised (100) single-crystal diamond surfaces and annealed in vacuo at temperatures up to 1000 °C to find a temperature-stable termination procedure that produces a surface with Negative Electron Affinity (NEA). The samples were analysed by X-ray Photoelectron Spectroscopy, Ultraviolet Photoelectron Spectroscopy and Energy-Filtered Photoemission Electron Microscopy to determine their electron affinity and work function values. NEA values were observed on samples following annealing above 400 °C, with the largest NEA value being –0.9 eV for a sample coated with a half-monolayer of Ti annealed at 400 °C. Work function values were ∼4.5 eV for all samples annealed at temperatures between 400 and 600 °C, then rose at higher temperatures due to the loss of substantial amounts of O from the surface. Work-function maps indicated that the surface was uniform over areas 5700 μm2, suggesting that the deposition and annealing steps used are reliable methods to produce films with homogeneous surface properties.