Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Philibert, Marilyne

  • Google
  • 3
  • 9
  • 98

Styrelsen for Arbejdsmarked og Rekruttering

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Direct-write piezoelectric coating transducers in combination with discrete ceramic transducer and laser pulse excitation for ultrasonic impact damage detection on composite plates12citations
  • 2022Lamb waves-based technologies for structural health monitoring of composite structures for aircraft applications51citations
  • 2018Damage Detection in a Composite T-Joint Using Guided Lamb Waves35citations

Places of action

Chart of shared publication
Philibert, M.
1 / 4 shared
Gresil, M.
1 / 22 shared
Soutis, Costas
3 / 356 shared
Chen, S.
1 / 19 shared
Liew, W. H.
1 / 1 shared
Wong, V.-K.
1 / 1 shared
Yao, K.
1 / 3 shared
Gresil, Matthieu
2 / 31 shared
Yao, Kui
2 / 4 shared
Chart of publication period
2022
2018

Co-Authors (by relevance)

  • Philibert, M.
  • Gresil, M.
  • Soutis, Costas
  • Chen, S.
  • Liew, W. H.
  • Wong, V.-K.
  • Yao, K.
  • Gresil, Matthieu
  • Yao, Kui
OrganizationsLocationPeople

article

Lamb waves-based technologies for structural health monitoring of composite structures for aircraft applications

  • Gresil, Matthieu
  • Soutis, Costas
  • Yao, Kui
  • Philibert, Marilyne
Abstract

The most common researched area of damage in a composite material such as carbon fibre reinforced plastics (CFRP) used currently in aircraft construction is barely visible impact damage (BVID), significantly reducing mechanical properties. Early detection and qualification would improve safety and reduce the cost of repair. In this context, structural health monitoring (SHM) techniques have been developed that could monitor a structure at any time by using a network of sensors. Widely used discrete ceramic transducers can generate and sense Lamb waves travelling in the structure. Wave propagation must then be analysed for effective damage identification. An effective SHM system is desired to meet several demands, such as minimised weight penalty, non-intrusive system not interfering with the structure performance, cost-effectiveness for implementation with targeted sensitivity and area coverage, capability of monitoring non-accessible and critical hot spot regions, robustness, and reliability. This review starts with an introduction on Lamb waves fundamentals and their use in SHM, and then particularly focuses on methods using piezoelectric transducers and mode selection. Some relevant applications on different structural configurations are discussed. Finally, recent developments on piezoelectric coating and direct-write sensor technology for tailored transducers are highlighted with some thoughts for near future research work.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • composite
  • ceramic