Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vihinen, Jorma

  • Google
  • 8
  • 34
  • 58

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023High-speed laser cladding of chromium carbide reinforced Ni-based coatings10citations
  • 2023Sliding wear behavior of Cold Metal Transfer cladded Stellite 12 hardfacings on martensitic stainless steel9citations
  • 2022Fractal-like Hierarchical CuO Nano/Microstructures for Large-Surface-to-Volume-Ratio Dip Catalysts5citations
  • 2019Three-dimensional printing of zirconia: characterization of early stage material properties17citations
  • 2019Three-dimensional printing of zirconia: characterization of early stage material properties17citations
  • 2018Industrialization of hybrid and additive manufacturing - Implementation to Finnish industry (HYBRAM)citations
  • 2014Surface Processing of Zirconia Ceramics by Lasercitations
  • 2014High-speed Sliding Friction of Laser-textured Silicon Nitride in Water against Rubbercitations

Places of action

Chart of shared publication
Kiviö, Jouko
1 / 1 shared
Tuominen, Jari
2 / 11 shared
Balusson, Clara
1 / 1 shared
Raami, Lassi
1 / 5 shared
Peura, Pasi
1 / 56 shared
Tapiola, Jaakko
1 / 2 shared
Vuoristo, Petri
1 / 75 shared
Ali-Löytty, Harri
1 / 44 shared
Parihar, Vijay Singh
1 / 6 shared
Yiannacou, Kyriacos
1 / 6 shared
Kellomäki, Minna
1 / 31 shared
Ukale, Dattatraya
1 / 1 shared
Lahtonen, Kimmo
1 / 38 shared
Sariola, Veikko
1 / 6 shared
Sharma, Vipul
1 / 5 shared
Suominen, Jussi M.
2 / 2 shared
Vallittu, Pekka
2 / 5 shared
Frankberg, Erkka
2 / 9 shared
Vastamäki, Teemu
2 / 7 shared
Kari, Risto
2 / 2 shared
Lassila, Lippo V. J.
2 / 10 shared
Levänen, Raimo Erkki
3 / 37 shared
Levänen, Erkki
1 / 20 shared
Puukko, Pasi
1 / 10 shared
Coatanea, Eric
1 / 6 shared
Kujanpää, Veli
1 / 43 shared
Komi, Erin
1 / 3 shared
Kilpeläinen, Pekka
1 / 1 shared
Riipinen, Tuomas
1 / 20 shared
Savolainen, Mikko
1 / 2 shared
Mokhtarian, Hossein
1 / 12 shared
Ismailov, Arnold
2 / 22 shared
Hyvärinen, L.
1 / 3 shared
Kumpulainen, T.
2 / 5 shared
Chart of publication period
2023
2022
2019
2018
2014

Co-Authors (by relevance)

  • Kiviö, Jouko
  • Tuominen, Jari
  • Balusson, Clara
  • Raami, Lassi
  • Peura, Pasi
  • Tapiola, Jaakko
  • Vuoristo, Petri
  • Ali-Löytty, Harri
  • Parihar, Vijay Singh
  • Yiannacou, Kyriacos
  • Kellomäki, Minna
  • Ukale, Dattatraya
  • Lahtonen, Kimmo
  • Sariola, Veikko
  • Sharma, Vipul
  • Suominen, Jussi M.
  • Vallittu, Pekka
  • Frankberg, Erkka
  • Vastamäki, Teemu
  • Kari, Risto
  • Lassila, Lippo V. J.
  • Levänen, Raimo Erkki
  • Levänen, Erkki
  • Puukko, Pasi
  • Coatanea, Eric
  • Kujanpää, Veli
  • Komi, Erin
  • Kilpeläinen, Pekka
  • Riipinen, Tuomas
  • Savolainen, Mikko
  • Mokhtarian, Hossein
  • Ismailov, Arnold
  • Hyvärinen, L.
  • Kumpulainen, T.
OrganizationsLocationPeople

article

Three-dimensional printing of zirconia: characterization of early stage material properties

  • Suominen, Jussi M.
  • Vallittu, Pekka
  • Frankberg, Erkka
  • Vastamäki, Teemu
  • Kari, Risto
  • Lassila, Lippo V. J.
  • Levänen, Raimo Erkki
  • Vihinen, Jorma
Abstract

Objective: The aim of this study was to evaluate the mechanical properties of 3D printed zirconia (ZrO2). <br/><br/>Materials and Methods: The test specimens were produced with a 3D printer that uses lithography-based ceramic manufacturing (LCM) technique with two different parameters in horizontal and vertical printing orientations. Altogether four groups of nine specimens were printed and examined. Mechanical characterization was performed using 3-point bending test (ISO 10477) and surface microhardness (Vickers) test. Grain structure, porosity and printing layer morphology were examined with optical and scanning electron microscopy (SEM). Additionally fractography analysis was done to investigate and evaluate features of fracture initiation site. Numeric results were statistically analyzed with ANOVA (a = 0.05).<br/><br/>Results: The average flexural strength reached for printed zirconia was 499 MPa (+/−75 MPa) for specimens printed in horizontal orientation and 575 MPa (+/−69 MPa) for specimens printed in vertical orientation. Optical microscopy and SEM analysis revealed that fractures initiated between the printing layers or from a local porosity. Printing layer thickness varied from under 13 μm to over 20 μm.<br/><br/>Conclusions: The study revealed that 3D printed zirconia has challenges in regards to layer integration. Based on this study, 3D printed zirconia still suffers from low mechanical strength, which together with long carbon-debinding time, does not make 3D printed zirconia a potential material for dental appliances at this stage. Further research is needed to create more suitable zirconia precursor slurries and to optimize printing parameters and sintering conditions to be able to 3D print zirconia with higher mechanical properties.

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • Carbon
  • grain
  • scanning electron microscopy
  • strength
  • flexural strength
  • bending flexural test
  • porosity
  • ceramic
  • optical microscopy
  • fractography
  • sintering
  • lithography