People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Klemettinen, Lassi
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Oxidation Behavior of AlxHfNbTiVY0.05 Refractory High-Entropy Alloys at 700–900 °Ccitations
- 2023Novel fluxing strategy of copper matte smelting and trace metals in E-Waste recyclingcitations
- 2021Leaching of rare earth elements from NdFeB magnets without mechanical pretreatment by sulfuric (H2SO4) and hydrochloric (HCl) acidscitations
- 2021Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) techniquecitations
- 2021Precious Metal Distributions Between Copper Matte and Slag at High PSO2 in WEEE Reprocessingcitations
- 2021Slag Chemistry and Behavior of Nickel and Tin in Black Copper Smelting with Alumina and Magnesia-Containing Slagscitations
- 2021Handling trace elements in WEEE recycling through copper smelting-an experimental and thermodynamic studycitations
- 2021Distribution of Co, Fe, Ni, and precious metals between blister copper and white metalcitations
- 2021Iron activity measurements and spinel-slag equilibria in alumina-bearing iron silicate slagscitations
- 2020Recovery of Precious Metals (Au, Ag, Pt, and Pd) from Urban Mining Through Copper Smeltingcitations
- 2020Trace element distributions between matte and slag in direct nickel matte smeltingcitations
- 2019Behavior of Ga, In, Sn, and Te in Copper Matte Smeltingcitations
- 2019Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmospherecitations
- 2019Slag Cleaning Equilibria in Iron Silicate Slag–Copper Systemscitations
- 2019Urban mining of precious metals via oxidizing copper smeltingcitations
- 2018Properties of Na2O–SiO2 slags in Doré smeltingcitations
- 2018Precious Metal Distributions in Direct Nickel Matte Smelting with Low-Cu Mattescitations
Places of action
Organizations | Location | People |
---|
article
Distribution of Co, Fe, Ni, and precious metals between blister copper and white metal
Abstract
<p>The distribution coefficients of Co, Ni, Ag, Au, Pd, and Fe at low concentrations between liquid copper and molten white metal (low-iron copper matte, ‘Cu<sub>2</sub>S’) were investigated experimentally as a function of temperature (1250–1350°C) and SO<sub>2</sub> partial pressure (0.01–1 atm). The experimental technique involved samples equilibration at controlled temperature and gas atmosphere, followed by quenching and subsequent elemental analysis of equilibrium phases with electron probe X-ray microanalysis and laser ablation-inductively coupled plasma-mass spectrometry. The distribution coefficient of silver, nickel, gold and palladium between liquid copper and white metal indicated that they favour the blister copper whereas cobalt and iron distribute more to the white metal. The distribution coefficient of nickel, e.g. increased from 2.1 at 0.1–1.0 atm P<sub>SO2</sub> and 1250°C to 3.2 at 1350°C. The distribution coefficients were only slightly dependent on temperature. The relatively strong dependence of the distribution coefficient of cobalt on P<sub>SO2</sub> was discussed.</p>