People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Edoziuno, F. O.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Development of regression models to predict and optimize the composition and the mechanical properties of aluminium bronze alloy
Abstract
<p>In this present work, aluminium bronze was doped at a percentage of 1-10 chemical composition of alloying additives (V, Mn, Nb, Ni and Cr) prepared using a sand casting method. The study targeted at improving the mechanical properties of aluminium bronze with alloying additives and using response surface methodology to develop a predictive model. The statistical analysis was done singly, as the alloying elements were added separately into Cu-10%Al alloy. Five alloying elements under 11 experimental runs were designated as independent variables and mechanical properties namely., ultimate tensile strength, %elongation, hardness, and impact strength were set as the response variables in the experimental design matrix. The results obtained from mechanical analytical tests were optimized and a predictive regression model developed using optimal custom design of RSM-Design Expert software. The developed model through statistical analysis of variance (ANOVA) revealed that the alloying elements significantly improved the mechanical properties haven shown a significant p-value of <0.05. The model effectively predicted an optimal composition factor level of the 3.00% vanadium, 1.00% manganese, 7.00% niobium, 2.00% nickel, and 9.00% chromium at the best desirability of 1.00. The predictive model developed in this work will help to achieve appropriate output for aluminium bronze component improvement.</p>