People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jebli, Mouad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Experimental evaluation of interface adhesion of a flax fiber composite patch with epoxy and polyurethane adhesives for the reinforcement of steel structurescitations
- 2024Experimental evaluation of interface adhesion of a flax fiber composite patch with epoxy and polyurethane adhesives for the reinforcement of steel structurescitations
- 2023Identification of a cohesive zone model for cement paste-aggregate interface in a shear testcitations
- 2023Experimental evaluation of interface adhesion of a flax fiber composite patch with epoxy and polyurethane adhesives for the reinforcement of steel structurescitations
- 2021Characterization of the expansion due to the delayed ettringite formation at the cement paste-aggregate interfacecitations
- 2021Characterization of the expansion due to the delayed ettringite formation at the cement paste-aggregate interfacecitations
- 2020Identification of a cohesive zone model for cement paste-aggregate interface in a shear testcitations
- 2020Experimental study of the chemo-mechanical properties of the interfacial transition zone of concrete
- 2020Leaching effect on concrete - Part I: characterization of chemical degradation evolution of ITZ ; Efectul levigării asupra betonului -partea I: caracterizarea evoluției degradării chimice a zonei de tranziție inter facială
- 2020Leaching effect on concrete – Part II: mechanical behaviour evolution of ITZ during leaching at the local scale
- 2020Leaching effect on concrete – Part II: mechanical behaviour evolution of ITZ during leaching at the local scale ; Efectul levigării asupra betonului – partea a ii-a: evoluția comportării mecanice a itz în timpul levigării la scară locală
- 2020Caractérisation à l’échelle locale de la dégradation de l’interphase ciment-granulat par un traitement hygrothermique
- 2020Leaching effect on concrete -part I: characterization of chemical degradation evolution of ITZ
- 2019Identification of a cohesive zone model for cement paste-aggregate interface in a shear testcitations
- 2018Leaching effect on mechanical properties of cement-aggregate interfacecitations
- 2018Leaching effect on mechanical properties of cement-aggregate interfacecitations
- 2018Experimental characterization of mechanical properties of the cement-aggregate interface in concretecitations
- 2018Experimental characterization of mechanical properties of the cement-aggregate interface in concretecitations
- 2018Caractérisation de l'expansion due à la réaction sulfatique interne à l'échelle de l'interphase pâte de ciment-granulat
- 2018Caractérisation expérimentale des propriétés chimio-mécaniques de l'interphase pâte de ciment-granulat par MEB et nano-indentation
- 2016Characterization of behavior and cracking of a cement paste confined between spherical aggregate particlescitations
- 2016Characterization of behavior and cracking of a cement paste confined between spherical aggregate particlescitations
- 2016Characterization at the local scale of mechanical properties of the cement paste-aggregate interface : leaching application
Places of action
Organizations | Location | People |
---|
article
Identification of a cohesive zone model for cement paste-aggregate interface in a shear test
Abstract
The development of tools, using a micromechanical approach, predicting the macroscopic behaviour of heterogeneous materials such as concrete, requires the knowledge of their microstructures (geometrical properties of phases), the behaviour of phases and the interaction laws between phases. This study is focused on a numerical modelling of a local shear test on a cement paste-aggregate composite using a cohesive zone model with the objective to identify the behaviour of the cement paste-aggregate interface. The computations use a 3D finite element modelling of the composite, using a cohesive law at the interface between the two phases. The cohesive model mimics the behaviour of the well-known interfacial transition zone. This work presents a methodology for the identification of cohesive law parameters at different stages of hydration and for different confining stresses using experimental results.