People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pumera, Martin
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 20243D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storagecitations
- 2023Heterolayered carbon allotrope architectonics via multi-material 3D printing for advanced electrochemical devicescitations
- 2022Functional metal-based 3D-printed electronics engineering: Tunability and bio-recognitioncitations
- 2022Hierarchical Atomic Layer Deposited V<sub>2</sub>O<sub>5</sub> on 3D Printed Nanocarbon Electrodes for High‐Performance Aqueous Zinc‐Ion Batteriescitations
- 2022Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destructioncitations
- 2022Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activitycitations
- 2021Organic photoelectrode engineering: accelerating photocurrent generation via donor-acceptor interactions and surface-assisted synthetic approachcitations
- 2021Organic photoelectrode engineering:accelerating photocurrent generationviadonor-acceptor interactions and surface-assisted synthetic approachcitations
- 2021Metal-plated 3D-printed electrode for electrochemical detection of carbohydratescitations
- 2021Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures ; Depozice atomárních vrstev fotoelektrokatalytického materiálu na 3D tištěné uhlíkové nanostruktury.citations
- 20172H → 1T phase engineering of layered tantalum disulphides in electrocatalysis: oxygen reduction reactioncitations
- 2017Surface properties of MoS2 probed by inverse gas chromatography and their impact on electrocatalytic propertiescitations
- 2011Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate-TiO2 filmcitations
- 2005Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracercitations
- 2005Glucose biosensor based on carbon nanotube epoxy compositescitations
Places of action
Organizations | Location | People |
---|
article
Heterolayered carbon allotrope architectonics via multi-material 3D printing for advanced electrochemical devices
Abstract
<p>3D printing has become a powerful technique in electrochemistry for fabricating electrodes, thanks to readily available conductive nanocomposite filaments, such as those based on carbon fillers (i.e., carbon nanotubes (CNTs) or carbon black (CB)) within an insulating polymeric matrix like polylactic acid (PLA). Inspired by inorganic heterostructures that enhance the functional characteristics of nanomaterials, we fabricated hetero-layered 3D printed devices based on carbon allotropes using a layer-by-layer assembly approach. The heterolayers were customised through the alternate integration of different carbon allotrope filaments via a multi-material 3D printing technique, allowing for a time-effective method to enhance electrochemical performance. As a first demonstration of applicability, CNT/PLA and CB/PLA filaments were utilised to construct ordered hetero-layered carbon-based electrodes. This contrasts with conventional methods where various carbon species are mixed in the same composite-based filament used for building electrochemical devices. Multi-material 3D-printed carbon electrodes exhibit improved electrochemical performance in energy conversion (e.g., hydrogen evolution reaction or HER) and sensing applications (e.g., ascorbic acid detection) compared to single-material electrodes. This work paves the way for manufacturing advanced 3D-printed heterolayered electrodes with enhanced electrochemical activity through multi-material 3D printing technology.</p>