People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Popovich, Vera
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Correlation between microstructural inhomogeneity and architectural design in additively manufactured NiTi shape memory alloyscitations
- 2023Microstructure-based cleavage modelling to study grain size refinement and simulated heat affected zones of S690 high strength steel
- 2023Corrosion and passive film characteristics of 3D-printed NiTi shape memory alloys in artificial salivacitations
- 2023Healing cracks in additively manufactured NiTi shape memory alloyscitations
- 2023Effect of heat treatment on microstructure and functional properties of additively manufactured NiTi shape memory alloyscitations
- 2023Superelastic response and damping behavior of additively manufactured Nitinol architectured materialscitations
- 2023Passive film formation and corrosion resistance of laser-powder bed fusion fabricated NiTi shape memory alloyscitations
- 2023Achieving superelasticity in additively manufactured Ni-lean NiTi by crystallographic designcitations
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Directed energy deposition of Invar 36 alloy using cold wire pulsed gas tungsten arc weldingcitations
- 2023Microstructure-based cleavage parameters in bainitic, martensitic, and ferritic steelscitations
- 2022Microstructure-informed statistical modelling of cleavage fracture in high strength steels considering through-thickness inhomogeneitiescitations
- 2022A comprehensive quantitative characterisation of the multiphase microstructure of a thick-section high strength steelcitations
- 2022Additive manufacturing of functionally graded inconel 718citations
- 2022Combined effects of stress and temperature on hydrogen diffusion in non-hydride forming alloys applied in gas turbinescitations
- 2022Cleavage fracture micromechanisms in thick-section quenched and tempered S690 high-strength steelscitations
- 2021Relating matrix stress to local stress on a hard microstructural inclusion for understanding cleavage fracture in high strength steelcitations
- 2021Effect of microstructure induced anisotropy on fatigue behaviour of functionally graded Inconel 718 fabricated by additive manufacturingcitations
- 2021Additive Manufacturing and Spark Plasma Sintering of Lunar Regolith for Functionally Graded Materialscitations
- 2021Hydrogen diffusion under the effect of stress and temperature gradients
- 2021Predictive analytical modelling and experimental validation of processing maps in additive manufacturing of nitinol alloyscitations
- 2020Effect of microstructure on cleavage fracture of thick-section quenched and tempered S690 high-strength steelcitations
- 2020A review of NiTi shape memory alloy as a smart material produced by additive manufacturingcitations
- 2020Selective laser melting of Inconel 718 under high laser powercitations
- 2020Additive manufacturing of Ti-48Al-2Cr-2Nb alloy using gas atomized and mechanically alloyed plasma spheroidized powderscitations
- 2019Recent developments and challenges of cleavage fracture modelling in steelscitations
Places of action
Organizations | Location | People |
---|
article
Healing cracks in additively manufactured NiTi shape memory alloys
Abstract
The pursuit of enhancing NiTi superelasticity through laser powder bed fusion (L-PBF) and [001] texture creation poses a challenge due to increased susceptibility to hot cracking in the resulting microstructure with columnar grains. This limitation restricts NiTi's application and contributes to material waste. To overcome this, we introduce a pioneering approach: utilising spark plasma sintering (SPS) to heal directional cracks in [001] textured L-PBF NiTi shape memory alloy. Diffusion bonding and oxygen utilisation for Ti 2 NiO x formation was found to successfully heal the cracks. SPS enhances mechanical properties, superelasticity at higher temperatures, and two-way shape memory strain during thermomechanical cycling. This work provides an alternative solution for healing cracks in L-PBF parts, enabling the sustainable reuse of cracked materials. By implementing SPS, this approach effectively addresses hot cracking limitations, expanding the application potential of L-PBF NiTi parts while improving their functional and mechanical properties. ; Team Vera Popovich ; Team Marcel Hermans