Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Val, Dimitri V.

  • Google
  • 5
  • 7
  • 202

Heriot-Watt University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Probabilistic approach to the sustainability assessment of reinforced concrete structures in conditions of climate change9citations
  • 2012Prediction of cover crack propagation in RC structures caused by corrosion14citations
  • 2012Cover cracking in reinforced concrete elements due to corrosion25citations
  • 2009Experimental and numerical investigation of corrosion-induced cracking in reinforced concrete structures154citations
  • 2009Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structurescitations

Places of action

Chart of shared publication
Salman, Husham A.
1 / 1 shared
Wang, Xiao-Hui
1 / 1 shared
Malami, Salim Idris
1 / 3 shared
Suryanto, Benny
1 / 19 shared
Stewart, Mark G.
3 / 7 shared
Chernin, Leon
1 / 9 shared
Chernin, Leonid
3 / 3 shared
Chart of publication period
2024
2012
2009

Co-Authors (by relevance)

  • Salman, Husham A.
  • Wang, Xiao-Hui
  • Malami, Salim Idris
  • Suryanto, Benny
  • Stewart, Mark G.
  • Chernin, Leon
  • Chernin, Leonid
OrganizationsLocationPeople

article

Cover cracking in reinforced concrete elements due to corrosion

  • Val, Dimitri V.
  • Chernin, Leonid
Abstract

The article considers analytical modelling of crack initiation in the concrete cover caused by corrosion of reinforcing steel. Initially, existing analytical models describing this phenomenon are critically reviewed. A new analytical model proposed by the authors is then presented and calibrated against available experimental data. The model is based on a thick-walled cylinder approach. To account for partial cracking of the concrete cover the cylinder is divided into two parts – a cracked inner cylinder and an uncracked outer one. The model ensures a consistent stress–strain formulation within both the inner and outer cylinders and enables to achieve complete continuity of stresses and strains on the boundary between the cylinders that distinguish it from the previously published analytical models. The model is then used to estimate the amount of corrosion products, which have diffused into concrete pores and cracks before full cracking of the concrete cover. It is shown that this amount may be larger than has been previously assumed. It is also shown that the assumption that corrosion products diffuse into concrete only until they fully fill the so-called ‘porous’ zone around a reinforcing bar leads to results, which are difficult to explain from a physical point of view. An alternative approach to account for the diffusion of corrosion products into concrete is proposed. Finally, a possible decrease in the corrosion rate with time and its influence on the prediction of the time to crack initiation are considered. <br/> <br/>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • corrosion
  • crack
  • steel