Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mondal, Soumyadeep

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023On characterizing the viscoelastic electromechanical responses of functionally graded graphene-reinforced piezoelectric laminated composites6citations

Places of action

Chart of shared publication
Naskar, Susmita
1 / 19 shared
Shingare, K. B.
1 / 2 shared
Mukhopadhyay, Tanmoy
1 / 43 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Naskar, Susmita
  • Shingare, K. B.
  • Mukhopadhyay, Tanmoy
OrganizationsLocationPeople

article

On characterizing the viscoelastic electromechanical responses of functionally graded graphene-reinforced piezoelectric laminated composites

  • Naskar, Susmita
  • Mondal, Soumyadeep
  • Shingare, K. B.
  • Mukhopadhyay, Tanmoy
Abstract

The electromechanical responses of single and multi-layered piezoelectric functionally graded graphene-reinforced composite (FG-GRC) plates are studied based on an accurate higher-order shear deformation theory (HSDT) involving quasi-3D sinusoidal plate theory and linear piezoelectricity. These FG-GRC plates are composed of randomly oriented graphene nanoplatelets (GPLs) reinforcing fillers and the piezoelectric PVDF matrix considering two different distribution patterns such as linear- and uniform- distribution (LD and UD) of GPLs across the thickness. The modified Halpin-Tsai (HT) and Rule of mixture (ROM) models are utilized to determine the effective material properties of FG-GRCs. The analytical model of FG-GRCs is extended further to analyze the time-dependent linear viscoelastic electromechanical behavior of the system based on Biot model of viscoelasticity in the framework of inverse Fourier algorithm. The viscoelastic electromechanical responses include the static deformation and electric responses of simply supported FG-GRC plates which are investigated by considering transverse mechanical and external electrical loading, as well as other critical parameters like aspect ratio and weight fraction of GPLs. The numerical results reveal that the electromechanical response of FG-GRC plates can be enriched due to the addition of a small weight fraction of GPLs. The coupled multiphysics-based computational framework proposed here for predicting the viscoelastic electromechanical behavior of laminated composites can be exploited for stimulating and developing a wide range of micro-electro-mechanical systems (MEMS) and devices incorporating time-dependent programming features.

Topics
  • impedance spectroscopy
  • theory
  • layered
  • composite
  • viscoelasticity