People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kaljuvee, T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
One-step carbon nanotubes grafting with styrene-co-acrylonitrile by reactive melt blending for electrospinning of conductive reinforced composite membranes
Abstract
<p>Aim of this research was to electrospin conductive composite membrane of styrene-co-acrylonitrile (SAN) reinforced with carbon nanotubes (CNTs). To improve electrical conductivity of final membrane ionic liquid (IL) was used. For better dispersion of CNTs in SAN matrix one-step reactive melt blending method for grafting of SAN onto CNTs was developed. Influence of SANm-g-CNTs on solutions properties was studied and compared to solutions with ungrafted CNTs and carboxyl group functionazed CNTs (CNT-COOHs). Combination of IL and SANm-g-CNTs increase in to orders of magnitude SAN membrane tensile stress and modulus. Electrical conductivity of obtained membranes achieved the level of semi-conductor materials.</p>