Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Casal, N.

  • Google
  • 2
  • 20
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Diamond Window Technology for Electron Cyclotron Heating and Current Drive: State of the Art19citations
  • 2012Conceptual design of the liquid metal laboratory of the TECHNOFUSION facility4citations

Places of action

Chart of shared publication
Gagliardi, M.
1 / 3 shared
Schreck, Sabine
1 / 4 shared
Henderson, M.
1 / 3 shared
Gantenbein, G.
1 / 2 shared
Avramidis, K.
1 / 1 shared
Tran, M. Q.
1 / 2 shared
Woerner, E.
1 / 1 shared
Meier, A.
1 / 5 shared
Saibene, G.
1 / 1 shared
Scherer, T.
1 / 8 shared
Franke, T.
1 / 2 shared
Wild, C.
1 / 2 shared
Aiello, Gaetano
1 / 3 shared
Jelonnek, J.
1 / 6 shared
Strauss, D.
1 / 3 shared
Thumm, M.
1 / 38 shared
Ibarra, A.
1 / 2 shared
Abánades Velasco, Alberto
1 / 1 shared
Perlado Martín, José Manuel
1 / 8 shared
García, A.
1 / 9 shared
Chart of publication period
2019
2012

Co-Authors (by relevance)

  • Gagliardi, M.
  • Schreck, Sabine
  • Henderson, M.
  • Gantenbein, G.
  • Avramidis, K.
  • Tran, M. Q.
  • Woerner, E.
  • Meier, A.
  • Saibene, G.
  • Scherer, T.
  • Franke, T.
  • Wild, C.
  • Aiello, Gaetano
  • Jelonnek, J.
  • Strauss, D.
  • Thumm, M.
  • Ibarra, A.
  • Abánades Velasco, Alberto
  • Perlado Martín, José Manuel
  • García, A.
OrganizationsLocationPeople

article

Diamond Window Technology for Electron Cyclotron Heating and Current Drive: State of the Art

  • Gagliardi, M.
  • Schreck, Sabine
  • Henderson, M.
  • Gantenbein, G.
  • Avramidis, K.
  • Tran, M. Q.
  • Woerner, E.
  • Meier, A.
  • Saibene, G.
  • Scherer, T.
  • Franke, T.
  • Wild, C.
  • Aiello, Gaetano
  • Casal, N.
  • Jelonnek, J.
  • Strauss, D.
  • Thumm, M.
Abstract

Nuclear fusion power plants require electron cyclotron (EC) heating and current drive (H&CD) systems for plasma heating and stabilization. High-power microwave beams between 1 and 2 MW generated by gyrotrons propagate in a dedicated waveguide transmission system to reach the plasma at specific locations. Key components in this transmission system are the chemical vapor deposition diamond windows on both the torus and gyrotron sides of the reactor as they allow transmission of high-power beams while acting as confinement and/or vacuum boundaries. Diamond windows consist of a polycrystalline diamond disk integrated in a metallic housing. In the conventional configuration, there is one disk perpendicular to the beam propagation direction. A steering mechanism is then used to deploy the fixed frequency beam at different locations in the plasma. This is, for instance, the configuration used in the ITER EC H&CD system. Movable parts close to the plasma will be problematic for the lifetime of launchers in future fusion reactors like the DEMOnstration nuclear fusion reactor (DEMO) because of the higher heat loads and neutron fluxes. Therefore, one of the alternative concepts is to deploy the beams directly at the desired resonant magnetic flux surface by frequency tuning gyrotrons. In this case, diamond windows able to work in a given frequency range, like the diamond Brewster-angle window, are required. It is an elegant and compact broadband window solution with the disk inclined at the Brewster angle with respect to the beam direction. This paper shows the development and the current state of different diamond window concepts including the design, the numerical analyses, and application of standard construction nuclear codes and of a specific qualification program.

Topics
  • impedance spectroscopy
  • surface
  • chemical vapor deposition