People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kadkhodazadeh, Shima
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Photo-stimulated hydrogen desorption from magnesium nanoparticlescitations
- 2022Photo-stimulated hydrogen desorption from magnesium nanoparticlescitations
- 2022High resolution crystal orientation mapping of ultrathin films in SEM and TEMcitations
- 2022High resolution crystal orientation mapping of ultrathin films in SEM and TEMcitations
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowire:Implications for Nanostructure Synthesiscitations
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowirecitations
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO2 Substratescitations
- 2020Optical and electronic properties of low-density InAs/InP quantum-dot-like structures designed for single-photon emitters at telecom wavelengthscitations
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO 2 Substratescitations
- 2019Rationally Designed PdAuCu Ternary Alloy Nanoparticles for Intrinsically Deactivation-Resistant Ultrafast Plasmonic Hydrogen Sensingcitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2019Optical property – composition correlation in noble metal alloy nanoparticles studied with EELScitations
- 2018Probing the chemistry of adhesion between a 316L substrate and spin-on-glass coatingcitations
- 2017The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticlescitations
- 2017The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticlescitations
- 2017Interfacial Interaction of Oxidatively Cured Hydrogen Silsesquioxane Spin-On-Glass Enamel with Stainless Steel Substratecitations
- 2017Broadband infrared absorption enhancement by electroless-deposited silver nanoparticlescitations
- 2014New amorphous interface for precipitate nitrides in steelcitations
- 2013Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregatescitations
- 2011Towards quantitative three-dimensional characterisation of InAs quantum dots
- 2010Mapping boron in silicon solar cells using electron energy-loss spectroscopy
- 2010Mapping boron in silicon solar cells using electron energy-loss spectroscopy
Places of action
Organizations | Location | People |
---|
article
New amorphous interface for precipitate nitrides in steel
Abstract
According to classical theories precipitate interfaces are described by their degree of coherency with the matrix, which affects their strengthening contribution. Investigations of nitride precipitate interfaces in 12% Cr steels with transmission electron microscopy have shown the nitrides to be enveloped in an amorphous shell a few nm thick, thus leaving them without any coherency with the matrix. The amorphous nature of the shells could be ascertained with high resolution microscopy and dark field techniques. When extracted from the ferrite matrix the amorphous shells were observed to crystallize during electron beam exposure. The amorphous shells were observed around Ta- and Nb-based nitrides, which are considered to have a high interfacial energy with the ferrite matrix. They were not observed around V-based nitrides which have a Baker–Nutting relationship with low-misfit to the matrix.