Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gallé, J. U.

  • Google
  • 2
  • 9
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Yield and plastic flow of soft metals in small volumes loaded in tension and flexure5citations
  • 2011Micromechanical testing with microstrain resolution12citations

Places of action

Chart of shared publication
Dunstan, D. J.
2 / 8 shared
Kiener, D.
1 / 12 shared
Yang, B.
1 / 17 shared
Png, K. M. Y.
2 / 7 shared
Bushby, A. J.
2 / 8 shared
Schmitt, N. J.
1 / 1 shared
Gannaway, G.
1 / 1 shared
Zhu, T. T.
1 / 5 shared
Ehrler, B.
1 / 18 shared
Chart of publication period
2012
2011

Co-Authors (by relevance)

  • Dunstan, D. J.
  • Kiener, D.
  • Yang, B.
  • Png, K. M. Y.
  • Bushby, A. J.
  • Schmitt, N. J.
  • Gannaway, G.
  • Zhu, T. T.
  • Ehrler, B.
OrganizationsLocationPeople

article

Yield and plastic flow of soft metals in small volumes loaded in tension and flexure

  • Dunstan, D. J.
  • Gallé, J. U.
  • Kiener, D.
  • Yang, B.
  • Png, K. M. Y.
  • Bushby, A. J.
Abstract

Theories of small-scale plasticity often invoke effects of strain gradient, and this is best tested by comparison of experimental stress–strain data obtained with and without well defined strain gradients. We provide new results to add to the body of data for 25–150-µm Cu wires in tension, 10–125-µm Cu and Ni foils in flexure and 10–125-µm Ni foils in tension, and test whether the data can adequately discriminate between the theories. What the collected data shows is that there are size effects in yield strain, as well as in the strain-hardening behaviour in the low-strain and high-strain regimes. Within the experimental scatter, the data is largely consistent with theories that invoke, and those that do not invoke, effects of strain gradients. The tension data in particular are too scattered, and the differences in the theoretical predictions are not sufficiently stark, to discriminate between the theories. However, we find that the flexure data for Cu and Ni agree within experimental error, indicating that material-specific properties such as elastic moduli and stacking fault energies are not involved in the size effect.<br/><br/>

Topics
  • impedance spectroscopy
  • polymer
  • plasticity
  • wire
  • stacking fault