People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mangler, Clemens
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Grain-Size-Dependent Plastic Behavior in Bulk Nanocrystalline FeAl
- 2023Interface effects on titanium growth on graphenecitations
- 2023Creation of Single Vacancies in hBN with Electron Irradiationcitations
- 2021The morphology of doubly-clamped graphene nanoribbons
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2012Radiation effects in bulk nanocrystalline FeAl alloycitations
- 2012Spinodal decomposition in (CaxBa1-x)(y)Fe4Sb12citations
- 2011Growth of nanosized chemically ordered domains in intermetallic FeAl made nanocrystalline by severe plastic deformationcitations
- 2011Three-Dimensional Analysis by Electron Diffraction Methods of Nanocrystalline Materialscitations
- 2011Thermally induced transition from a ferromagnetic to a paramagnetic state in nanocrystalline FeAl processed by high-pressure torsioncitations
- 2010Electron microscopy of severely deformed L12 intermetallicscitations
- 2010Quantitative local profile analysis of nanomaterials by electron diffractioncitations
- 2010Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsioncitations
- 2008TEM study of local disordering: a structural phase change induced by high-pressure torsioncitations
- 2004Nanostructures in L12-ordered Cu3Au processed by torsion under high pressurecitations
Places of action
Organizations | Location | People |
---|
article
Electron microscopy of severely deformed L12 intermetallics
Abstract
Severe plastic deformation (SPD) can be used to make bulk, nanostructured materials. Three L12 long-range ordered (LRO) intermetallic compounds were studied by TEM methods. The superlattice glide dislocations can dissociate according to two schemes: antiphase boundary (APB) coupled unit dislocations or superlattice intrinsic stacking fault (SISF) coupled super Shockley partials; both of them are analysed by weak-beam TEM methods. The nanostructures resulting from SPD carried out by high pressure torsion (HPT) are strongly affected by the different dissociation schemes of the dislocations. APB-dissociated superlattice dislocations and especially the APB tubes they form lead to the destruction of the LRO by HPT deformation as observed in Cu3Au and Ni3Al, whereas in Zr3Al heavily deformed (100,000% shear strain) at low temperatures the order is not destroyed since the deformation occurs by SISF-dissociated dislocations. In addition to the effects on the LRO the different dissociation schemes of the dislocations have a strong impact on the refinement and destruction of the crystalline structure by SPD. They seem to be decisive for the dynamic recovery considered as the limiting factor for the final grain sizes and the possibility of reaching amorphisation. Finally, the correlation between the reduction of the LRO and the structural refinement occurring during SPD is different in the three different alloys: In Cu3Au, the LRO is already strongly reduced before the structural refinement reaches saturation, in Ni3Al both are occurring simultaneously, whereas in Zr3Al, the formation of the nanograins does not seem to be connected with disordering. Document Type: Article