Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Humbeeck, Jan Van

  • Google
  • 2
  • 26
  • 156

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys119citations
  • 2009Roundrobin SMA modeling37citations

Places of action

Chart of shared publication
Kasinathan, Sakthivel
1 / 3 shared
Zhang, Zhiyong
1 / 7 shared
Delville, Remi
1 / 16 shared
Schryvers, Dominique
1 / 45 shared
Lagoudas, D. C.
1 / 2 shared
Auricchio, F.
1 / 26 shared
Frost, M.
1 / 28 shared
Pilch, J.
1 / 18 shared
Chemisky, Y.
1 / 4 shared
Piotrowski, B.
1 / 2 shared
Rio, Gerard
1 / 6 shared
Favier, Denis
1 / 40 shared
Boubakar, L.
1 / 4 shared
Reali, A.
1 / 8 shared
Zineb, T. Ben
1 / 1 shared
Morganti, S.
1 / 8 shared
Liu, Yinong
1 / 35 shared
Gibeau, E.
1 / 1 shared
Sedlak, P.
1 / 3 shared
Lexcellent, C.
1 / 7 shared
Duval, A.
1 / 6 shared
Oehler, S.
1 / 2 shared
Hartl, D.
1 / 2 shared
Heller, L.
1 / 25 shared
Sittner, P.
1 / 9 shared
Patoor, E.
1 / 14 shared
Chart of publication period
2010
2009

Co-Authors (by relevance)

  • Kasinathan, Sakthivel
  • Zhang, Zhiyong
  • Delville, Remi
  • Schryvers, Dominique
  • Lagoudas, D. C.
  • Auricchio, F.
  • Frost, M.
  • Pilch, J.
  • Chemisky, Y.
  • Piotrowski, B.
  • Rio, Gerard
  • Favier, Denis
  • Boubakar, L.
  • Reali, A.
  • Zineb, T. Ben
  • Morganti, S.
  • Liu, Yinong
  • Gibeau, E.
  • Sedlak, P.
  • Lexcellent, C.
  • Duval, A.
  • Oehler, S.
  • Hartl, D.
  • Heller, L.
  • Sittner, P.
  • Patoor, E.
OrganizationsLocationPeople

article

Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys

  • Kasinathan, Sakthivel
  • Zhang, Zhiyong
  • Delville, Remi
  • Schryvers, Dominique
  • Humbeeck, Jan Van
Abstract

<p>Recent findings have linked low hysteresis in shape memory alloys with phase compatibility between austenite and martensite. To investigate the evolution of microstructure as phase compatibility increases and hysteresis is reduced, transmission electron microscopy was used to study the alloy system Ti50Ni50-xPdx, where the composition is systemically tuned to approach perfect compatibility. Changes in morphology, twinning density and twinning modes are reported, along with special microstructures occurring when compatibility is achieved. In addition, the interface between austenite and a single variant of martensite was studied by high-resolution and conventional electron microscopy. The low energy configuration of the interface detailed in this article suggests that it plays an important role in the lowering of hysteresis compared to classical habit plane interfaces.</p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • morphology
  • phase
  • transmission electron microscopy