People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fiordaliso, Elisabetta Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performance.
- 2021Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performancecitations
- 2020Effect of Cold Sintering Process (CSP) on the Electro-Chemo-Mechanical Properties of Gd-doped Ceria (GDC)citations
- 2020Shadow Epitaxy for In Situ Growth of Generic Semiconductor/Superconductor Hybridscitations
- 2019Evolution of intermetallic GaPd2/SiO2 catalyst and optimization for methanol synthesis at ambient pressurecitations
- 2015Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanolcitations
- 2015Intermetallic GaPd 2 Nanoparticles on SiO 2 for Low-Pressure CO 2 Hydrogenation to Methanol:Catalytic Performance and In Situ Characterizationcitations
- 2012H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPGcitations
- 2012Size dependent reactivity of metal nanoparticles and alloys supported on HOPG, probed by the H-D exchange and the NH3 decomposition reactions
- 2012Strong Metal Support Interaction of Pt and Ru Nanoparticles Deposited on HOPG Probed by the H-D Exchange Reactioncitations
- 2011H2-splitting on Pt/Ru alloys supported on sputtered HOPGcitations
Places of action
Organizations | Location | People |
---|
article
Evolution of intermetallic GaPd2/SiO2 catalyst and optimization for methanol synthesis at ambient pressure
Abstract
<p>The CO<sub>2</sub> hydrogenation to methanol is efficiently catalyzed at ambient pressure by nanodispersed intermetallic GaPd<sub>2</sub>/SiO<sub>2</sub> catalysts prepared by incipient wetness impregnation. Here we optimize the catalyst in terms of metal content and reduction temperature in relation to its catalytic activity. We find that the intrinsic activity is higher for the GaPd<sub>2</sub>/SiO<sub>2</sub> catalyst with a metal loading of 13 wt.% compared to catalysts with 23 wt.% and 7 wt.%, indicating that there is an optimum particle size for the reaction of around 8 nm. The highest catalytic activity is measured on catalysts reduced at 550 °C. To unravel the formation of the active phase, we studied calcined GaPd<sub>2</sub>/SiO<sub>2</sub> catalysts with 23 wt.% and 13 wt.% using a combination of in situ techniques: X-ray diffraction (XRD), X-ray absorption near edge fine structure (XANES) and extended X-ray absorption fine structure (EXAFS). We find that the catalyst with higher metal content reduces to metallic Pd in a mixture of H<sub>2</sub>/Ar at room temperature, while the catalyst with lower metal content retains a mixture of PdO and Pd up to 140 °C. Both catalysts form the GaPd<sub>2</sub> phase above 300 °C, albeit the fraction of crystalline intermediate Pd nanoparticles of the catalyst with higher metal loading reduces at higher temperature. In the final state, the catalyst with higher metal loading contains a fraction of unalloyed metallic Pd, while the catalyst with lower metal loading is phase pure. We discuss the alloying mechanism leading to the catalyst active phase formation selecting three temperatures: 25 °C, 320 °C and 550 °C.</p>