Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

White, Tom

  • Google
  • 1
  • 7
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Metal halide perovskite31citations

Places of action

Chart of shared publication
Shen, Heping
1 / 6 shared
Jacobs, Daniel
1 / 4 shared
Duong, The
1 / 10 shared
Peng, Jun
1 / 4 shared
Wu, Nandi
1 / 2 shared
Catchpole, Kylie
1 / 8 shared
Wu, Yiliang
1 / 6 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Shen, Heping
  • Jacobs, Daniel
  • Duong, The
  • Peng, Jun
  • Wu, Nandi
  • Catchpole, Kylie
  • Wu, Yiliang
OrganizationsLocationPeople

article

Metal halide perovskite

  • Shen, Heping
  • Jacobs, Daniel
  • Duong, The
  • Peng, Jun
  • Wu, Nandi
  • Catchpole, Kylie
  • White, Tom
  • Wu, Yiliang
Abstract

<p>Multi-junction tandem design has been proven to be an effective means to further improve the efficiency of solar cells. However, its share in the photovoltaics market at present is tiny, since the most efficient tandem device comprises III-V semiconductors, which entail the use of expensive fabrication processes. The advent of perovskite solar cells, which have revitalized the PV field with their unprecedented pace of development, promises to address this bottleneck. Perovskite materials could not only serve as the top subcell absorber for commercial solar cells including Si and copper indium gallium selenide, but could work efficiently as bottom subcells owing to highly tuneable bandgaps which extend down to the range of ~1.2 to 1.5 eV. The highest-efficiency perovskite tandem to date was achieved by pairing a perovskite top cell with a Si bottom cell in a four-terminal configuration, yielding 26.4%. This review gives an overview of recent progress on the main tandem structures, and describes the detailed design improvements that have resulted in new record efficiencies. Ultimately, commercialization of these tandem solar cells relies on the scalability of perovskite technology. We, therefore, highlight the development of large-scale tandems and approaches to produce perovskite modules. We also point out the critical aspects that will require further effort and provide guidelines for future developments. The potential obstacles that will hamper the commercialization of perovskite tandems, if not adequately addressed, namely device stability and toxicity, are then critically examined. Finally, the substantial opportunities that perovskite materials open up for other solar devices with a tandem configuration are mentioned, which are attracting increasing attention.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • copper
  • toxicity
  • Gallium
  • Indium
  • III-V semiconductor