People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grenèche, Jean-Marc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Influence of Nd Substitution on the Phase Constitution in (Zr,Ce)Fe10Si2 Alloys with the ThMn12 Structurecitations
- 2018Exchange-Biased Fe 3− x O 4 -CoO Granular Composites of Different Morphologies Prepared by Seed-Mediated Growth in Polyol: From Core-Shell to Multicore Embedded Structurescitations
- 2017Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramicscitations
- 2016Structural behavior of laser-irradiated γ-Fe 2 O 3 nanocrystals dispersed in porous silica matrix : γ-Fe 2 O 3 to α-Fe 2 O 3 phase transition and formation of ε-Fe 2 O 3citations
- 2016New iron tetrazolate frameworks : synthesis temperature effect, thermal behaviour, Mössbauer and magnetic studiescitations
- 2015Structural investigations of iron oxynitride multilayered films obtained by reactive gas pulsing processcitations
- 2015New iron tetrazolate frameworkscitations
- 2015New iron tetrazolate frameworks:synthesis temperature effect, thermal behaviour, Mössbauer and magnetic studiescitations
- 2014Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Cantingcitations
- 2014Exchange-biased oxide-based core-shell nanoparticles produced by seed-mediated growth in polyolcitations
- 2013Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materialscitations
- 2012Insights into the Mechanism Related to the Phase Transition from γ-Fe2O3 to α-Fe2O3 Nanoparticles Induced by Thermal Treatment and Laser Irradiationcitations
- 2012Development of new anodes compatible with the solid oxide fuel cell electrolyte BaIn0.3Ti0.7O2.85citations
- 2004The titration of clay minerals I. Discontinuous backtitration technique combined with CEC measurements.citations
- 2000Microstructural and magnetic properties of Fe/Cr-substituted ferrite compositescitations
Places of action
Organizations | Location | People |
---|
article
Structural behavior of laser-irradiated γ-Fe 2 O 3 nanocrystals dispersed in porous silica matrix : γ-Fe 2 O 3 to α-Fe 2 O 3 phase transition and formation of ε-Fe 2 O 3
Abstract
The effects of laser irradiation on γ-FeO 4 ± 1 nm diameter maghemite nanocrystals synthesized by co-precipitation and dispersed into an amorphous silica matrix by sol-gel methods have been investigated as function of iron oxide mass fraction. The structural properties of γ-FeO phase were carefully examined by X-ray diffraction and transmission electron microscopy. It has been shown that γ-FeO nanocrystals are isolated from each other and uniformly dispersed in silica matrix. The phase stability of maghemite nanocrystals was examinedunder laser irradiation by Raman spectroscopy and compared with that resulting from heat treatment by X-ray diffraction. It was concluded that ε-FeO is an intermediate phase between γ-FeO and -FeO and a series of distinct Raman vibrational bands were identified with the ε-FeO phase. The structural transformation of γ-FeO into -FeO occurs either directly or via ε-FeO, depending on the rate of nanocrystal agglomeration, the concentration of iron oxide in the nanocomposite and the properties of silica matrix. A phase diagram is established as a function of laser power density and concentration.