People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rios, Sara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Mechanical Behaviour of Steel Slag–Rubber Mixtures: Laboratory Assessmentcitations
- 2022Analysis of simplified time of liquefaction triggering methods by laboratory tests, physical modelling and numerical analysiscitations
- 2021Cyclic and Dynamic Behavior of Sand-Rubber and Clay-Rubber Mixturescitations
- 2020Application of the response surface method to optimize alkali activated cements based on low-reactivity ladle furnace slagcitations
- 2020Application of the response surface method to optimize alkali activated cements based on low-reactivity ladle furnace slagcitations
- 2019Mechanical and durability properties of a soil stabilised with an alkali-activated cementcitations
- 2018Increasing the reaction kinetics of alkali-activated fly ash binders for stabilisation of a silty sand pavement sub-basecitations
- 2018Alkali-activated cement using slags and fly ash
- 2017Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strainscitations
- 2013Fatigue Cyclic Tests on Artificially Cemented Soilcitations
- 2013Influence of grain size and mineralogy on the porosity/cement ratiocitations
Places of action
Organizations | Location | People |
---|
article
Increasing the reaction kinetics of alkali-activated fly ash binders for stabilisation of a silty sand pavement sub-base
Abstract
The paper addresses several options to improve the reaction kinetics of alkali-activated low-calcium fly ash binders for soil stabilisation in road platforms. For that purpose, an experimental programme was established to assess the strength evolution, with time, of different binders, based on ash, lime, sodium chloride and alkali solutions, applied in the stabilisation of a silty sand. The tests included unconfined compression strength tests, triaxial tests and seismic wave measurements performed at different curing periods. The results were compared with a binder made of Portland cement and a commercial additive specifically designed for soil stabilisation in road applications. The activated ash mixtures with lime were the most performing producing a significant increase in the reactions development and, consequently, in the strength gain rate. The sodium chloride significantly improved the lime and lime-ash mixtures, but provided only a slight improvement in the activated ash mixtures.