Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mcchlery, Susan

  • Google
  • 1
  • 4
  • 126

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm126citations

Places of action

Chart of shared publication
Ramage, Gordon
1 / 4 shared
Jones, Brian
1 / 4 shared
Williams, Craig
1 / 5 shared
Mowat, Eilidh
1 / 1 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Ramage, Gordon
  • Jones, Brian
  • Williams, Craig
  • Mowat, Eilidh
OrganizationsLocationPeople

article

The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm

  • Ramage, Gordon
  • Mcchlery, Susan
  • Jones, Brian
  • Williams, Craig
  • Mowat, Eilidh
Abstract

<p>Aspergillus fumigatus is an increasingly prevalent opportunistic fungal pathogen of various immuno-compromised individuals. It has the ability to filament within the lungs forming dense intertwined mycelial balls. These morphological characteristics resemble those of microbial biofilms, which are matrix enclosed microbial populations, adherent to each other and/or to surfaces or interfaces. The purpose of this paper is to review some recent experiments that indicate the potential biofilm forming capacity of A. fumigatus in vitro. Initially it was established that conidial seeding density is important for stable biofilm development. In the optimized model conidial germination and filamentous growth characteristics were not observed until 8 h, after which a multi-cellular population expanded exponentially forming a thick structure (approx. 250 μm). Calcofluor white staining of this revealed the presence of extracellular polymeric matrix material, which increased as the biofilm matured. Subsequent antifungal sensitivity testing of this structure showed that azoles, polyenes and echinocandins were ineffective in reducing the cellular viability at therapeutically attainable concentrations. Microarray and real-time PCR analysis demonstrated the up-regulation of AfuMDR4 during multicellular growth and development, which may account the recalcitrance observed. Overall, A. fumigatus appears to possess the classical elements of biofilm growth, namely multicellularity, matrix production and sessile resistance. This controversial approach to understanding the biology of A. fumigatus infection may provide crucial information on how to treat this pathogenic fungus more effectively.</p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • experiment
  • forming