People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schneider-Bröskamp, Christian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Residual Stresses in a Wire and Arc-Directed Energy-Deposited Al–6Cu–Mn (ER2319) Alloy Determined by Energy-Dispersive High-Energy X-ray Diffractioncitations
- 2023Effects on Microstructure and Mechanical Properties of the Addition of Co, Cr, and Fe to the Eutectoid System Ti-6.5Cu
- 2023Effects of Fe and Al additions on the eutectoid transformation and its transformation products in Ti-5.9(wt.%)Cu
- 2023Titanium MMCs With Enhanced Specific Young’s Modulus via Powder Hot Extrusion
- 2023Mechanical and microstructural characterization of aluminium micro-pins realized by cold metal transfer
- 2022Investigation of welding process gases for wire arc additive manufacturing of AL5183
- 2022Characterisation of structural modifications on cold-formed AA2024 substrates by wire arc additive manufacturingcitations
- 2022Drahtbasierte additive Fertigung der Luftfahrtlegierung AA2024
Places of action
Organizations | Location | People |
---|
article
Characterisation of structural modifications on cold-formed AA2024 substrates by wire arc additive manufacturing
Abstract
<p>Wire arc additive manufacturing, employing conventional fusion welding processes, shows excellent versatility and can therefore be used for structural modifications of existing parts to create hybrid components. This study evaluates the modification of cold-formed AA2024 metal sheets with 2xxx filler metals to produce 2xxx hybrid structures. The alloys are investigated by thermodynamic simulations and the solidification crack susceptibility is assessed by calculating the index for hot cracking susceptibility. Using cold metal transfer, single-layer depositions are generated on profile sheets after which the specimens are characterised by three analysis procedures: metallographic analysis, chemical analysis, and hardness testing. Results indicate that AA2024 wire material, although generally considered difficult to weld, is more suitable for the additive modification of AA2024 sheets and profiles, as crack-free specimens can be deposited on cold-formed substrates.</p>