People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mashal, Mohamed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Stability of polymeric cationic niosomes and their plasmid DNA-based complexes as gene delivery carriers.
Abstract
This study aims to explore the stability of lipo-polymeric niosomes/niosome-based pCMS-EGFP complexes under different storage temperatures (25 °C, 4 °C, and -20 °C). To date, the question of nucleic acid-complex stability is one of the most vital issues in gene delivery applications. The need for stable vaccines during the COVID-19 pandemic has merely highlighted it. In the case of niosomes as gene carriers, the scientific literature still lacks comprehensive stability studies. In this study, the physicochemical features of niosomes/nioplexes in terms of size, surface charge, and polydispersity index (PDI), along with transfection efficiency, and cytotoxicity in NT2 cells were evaluated for 8 weeks. Compared to day 0, the physicochemical features of the niosomes stored at 25 °C and -20 °C changed dramatically in terms of size, zeta potential, and PDI, while remaining in reasonable values when stored at 4 °C. However, niosomes and nioplexes stored at 4 °C and -20 °C showed nearly stable transfection efficiency values, yet an obvious decrease at 25 °C. This article provides a proof of concept into the stability of polymeric cationic niosomes and their nioplexes as promising gene delivery vehicles. Moreover, it highlights the practical possibility of storing nioplexes at 4 °C for up to 2 months, as an alternative to niosomes, for gene delivery purposes.