People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lai, Romina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2017Mechanosynthesis of coordination polymers based on dithiophosphato and dithiophosphonato NiII complexes and 1,4-di(3-pyridinyl)buta-1,3-diyne ligandcitations
- 2017Mechanosynthesis of coordination polymers based on dithiophosphato and dithiophosphonato NiIIcomplexes and 1,4-di(3-pyridinyl)buta-1,3-diyne ligandcitations
- 2016Coordination polymers and polygons using di-pyridyl-thiadiazole spacers and substituted phosphorodithioato NiII complexes: potential and limitations for inorganic crystal engineeringcitations
Places of action
Organizations | Location | People |
---|
article
Mechanosynthesis of coordination polymers based on dithiophosphato and dithiophosphonato NiII complexes and 1,4-di(3-pyridinyl)buta-1,3-diyne ligand
Abstract
In recent decades the mechanosynthesis of Coordination Polymers (CPs) has consolidated as a powerful method for the formation of coordination bonds. The aim of this study regards the environmental friendly mechanosynthesis of coordination polymers by milling the neutral square planar NiII complexes [((MeO)2PS2)2Ni] (1), [((EtO)2PS2)2Ni] (2), [((MeO–C6H4)(MeO))PS2)2Ni] (3), [((MeO–C6H4)(EtO))PS2)2Ni] (4), with the organic ligand 1,4-di(3-pyridyl)buta-1,3-diyne (L). Using these substrates, several mechanosynthesis were performed via Net Grinding (NG) and Liquid Assisted Grinding (LAG) approaches. A mechanochemical trend concerning the general inverse correlation between melting point of reagents and reactivity has been observed, highlighting a possible mechanism for these reactions under mechanical conditions.