Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mughal, M. Rizwan

  • Google
  • 1
  • 8
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Characterization and Implementation of a Piezoelectric Energy Harvester Configuration: Analytical, Numerical and Experimental Approach30citations

Places of action

Chart of shared publication
Ali, Ahsan
1 / 6 shared
Gaudenzi, Paolo
1 / 3 shared
Qayyum, Faisal
1 / 5 shared
Elahi, Hassan
1 / 4 shared
Israr, Asif
1 / 2 shared
Eugeni, Marco
1 / 2 shared
Munir, Khushboo
1 / 1 shared
Praks, Jaan
1 / 7 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ali, Ahsan
  • Gaudenzi, Paolo
  • Qayyum, Faisal
  • Elahi, Hassan
  • Israr, Asif
  • Eugeni, Marco
  • Munir, Khushboo
  • Praks, Jaan
OrganizationsLocationPeople

article

Characterization and Implementation of a Piezoelectric Energy Harvester Configuration: Analytical, Numerical and Experimental Approach

  • Ali, Ahsan
  • Mughal, M. Rizwan
  • Gaudenzi, Paolo
  • Qayyum, Faisal
  • Elahi, Hassan
  • Israr, Asif
  • Eugeni, Marco
  • Munir, Khushboo
  • Praks, Jaan
Abstract

<p>From the last few decades, the piezoelectric materials are playing a vital role in the field of energy harvesting because of their capability to convert mechanical energy from the surroundings into useful electrical energy. In this research, the performance of the piezoelectric energy harvester (PEH) in cantilever configuration with varying length and width of the patch as compared to the beam was analyzed. Moreover, the induced voltage and power harvested by the designed PEH are analyzed for the various configurations of piezoelectric patch (PZTp). The effect of length and width of the PZTp and beam is predicted for the energy harvesting phenomenon. The effect of different piezoelectric materials [i.e. Lead zirconate titanate (PZT-5A) and Barium titanate (BaTiO<sub>3</sub>)] bonded to different non-piezoelectric materials (i.e. Aluminum (Al) and fiberglass) is studied analytically. An analytical model is developed for three different cases to analyze the effect of varying patch length while keeping the length of the beam variable. Finite Element Models to study energy harvesting and modes of vibration for all three cases were developed. The results of the analytical model and numerical model are compared with experimental investigations and are found to agree with a maximum of 22% error. For the designed harvesters, the maximum power output is obtained for the test case in which PZT-5A patch of smaller length is bonded with Al patch of larger length. The analytical, numerical and experimental results depict a similar trend.</p>

Topics
  • impedance spectroscopy
  • aluminium
  • Barium
  • piezoelectric material