People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bociong, Kinga
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Enhancing the Antimicrobial Properties of Experimental Resin-Based Dental Composites through the Addition of Quaternary Ammonium Saltscitations
- 2024Antibacterial Agents Used in Modifications of Dental Resin Composites: A Systematic Reviewcitations
- 2023Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literaturecitations
- 2023Evaluation of the Selected Mechanical and Aesthetic Properties of Experimental Resin Dental Composites Containing 1-phenyl-1,2 Propanedione or Phenylbis(2,4,6-trimethylbenzoyl)-phosphine Oxide as a Photoinitiatorcitations
- 2023The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatmentscitations
- 2023The influence of quaternary ammonium salts on mechanical properties of light-cured resin dental compositescitations
- 2023Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite?citations
- 2023Preparation of an experimental dental composite with different Bis-GMA/UDMA proportionscitations
- 2022Can TPO as Photoinitiator Replace “Golden Mean” Camphorquinone and Tertiary Amines in Dental Composites? Testing Experimental Composites Containing Different Concentration of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide citations
- 2021A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Compositescitations
- 2021The Influence of Various Photoinitiators on the Properties of Commercial Dental Compositescitations
- 2017The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stresscitations
- 2016Wpływ sorpcji wody na naprężenia skurczowe materiałów kompozytowych
Places of action
Organizations | Location | People |
---|
article
Preparation of an experimental dental composite with different Bis-GMA/UDMA proportions
Abstract
Three types of matrix with constant amount of TEGDMA (30 wt.%), and Bis-EMA (10 wt.%) and variable values of Bis-GMA (10, 5, or 0 wt.%) and UDMA (50, 55, or 60 wt.%) were prepared. Composites were filled with 45 wt.% of silanized silica. Both matrices and composites were tested for flexural strength (FS), diametral tensile strength (DTS), hardness (HV) and polymerization shrinkage stress. There were no significant differences for the DTS test. All materials meet the FS requirements for type 2 dental composites. A significant decrease in HV was observed for matrix non-containing Bis-GMA. The highest value of shrinkage stress had material without Bis-GMA and it amounted 16,6 ± 1.0 MPa (filled) or 13.6 ± 0.8 MPa (unfilled). It was also shown that increasing the amount of UDMA while simultaneously reducing Bis-GMA in the studied materials increases polymerization shrinkage stress, which could be unfavorable for dental materials.