Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chakraborty, Arun Kumar

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Investigation on stability of weld morphology, microstructure of processed zones, and weld quality assessment for hot wire gas tungsten arc welding of electrolytic tough pitch copper10citations

Places of action

Chart of shared publication
Darji, Raghavendra
1 / 3 shared
Joshi, Jaydeep
1 / 2 shared
Badheka, Vishvesh
1 / 10 shared
Yadav, Ashish
1 / 3 shared
Mehta, Kush P.
1 / 33 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Darji, Raghavendra
  • Joshi, Jaydeep
  • Badheka, Vishvesh
  • Yadav, Ashish
  • Mehta, Kush P.
OrganizationsLocationPeople

article

Investigation on stability of weld morphology, microstructure of processed zones, and weld quality assessment for hot wire gas tungsten arc welding of electrolytic tough pitch copper

  • Darji, Raghavendra
  • Joshi, Jaydeep
  • Badheka, Vishvesh
  • Chakraborty, Arun Kumar
  • Yadav, Ashish
  • Mehta, Kush P.
Abstract

<p>In the present investigation, stability of weld morphology was investigated in case of electrolytic tough pitch copper (12 mm thickness) processed by Hot Wire Gas Tungsten Arc Welding (HW GTAW) using CuNi filler wire with variations of processing conditions, using different combination of hot wire’s parameters such as feed rate and current. The assessment of weld bead geometry was performed using visual examination (during and after welding), and macrographic dimensional measurements of weld bead geometry such as depth of penetration and depth to width ratio. In addition to the stability of weld bead geometries, microstructural variations and weld quality assessments were studied using optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and micro-hardness measurements in case of processed sample observed with most uniform weld bead geometry. The results revealed that minimum dimensional variations of weld bead geometry throughout the processed length was obtained with 5.42 mm bead width, 1.2 mm bead height, 1.8 mm penetration, and 0.36 depth to width ratio when hot wire’s parameters were 0.6 m/min wire feed rate and 90 amps hot wire current. The bridging mode of metal transfer helps to receive more stable weld bead geometry with minimum dimensional variations. Ni filler wire of HW GTAW improves the hardness in the Heat affected zone (70 HV<sub>0.3</sub>) and weld zone (80 HV<sub>0.3</sub>), which were 33% and 17% higher of base material. The weld zone was consisting of mixed mode of grains such as dendrites just above the fusion line and cellular grains further above dendrites in case of processed sample of minimum dimensional variations of weld bead geometry throughout the processed length.</p>

Topics
  • grain
  • scanning electron microscopy
  • hardness
  • copper
  • optical microscopy
  • tungsten
  • wire
  • X-ray spectroscopy