Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rajan, K.

  • Google
  • 4
  • 31
  • 122

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Nanoparticle Reshaping and Ion Migration in Nanocomposite Ultrafast Ionic Actuators: The Converse Piezo–Electro–Kinetic Effect2citations
  • 2018In situ generation of silver nanoparticles in PVDF for the development of resistive switching devices21citations
  • 2015Mining information from atom probe data67citations
  • 2009Analyzing Sparse Data for Nitride Spinels Using Data Mining, Neural Networks, and Multiobjective Genetic Algorithms32citations

Places of action

Chart of shared publication
Chiappone, A.
2 / 12 shared
Bejtka, K.
2 / 7 shared
Ricciardi, C.
2 / 8 shared
F., Pirri C.
1 / 10 shared
Cicero, G.
1 / 2 shared
Bocchini, S.
2 / 4 shared
Perrone, D.
2 / 7 shared
Pandolfi, P.
1 / 2 shared
Rizza, G.
1 / 17 shared
Chiolerio, A.
2 / 7 shared
Risplendi, F.
1 / 1 shared
Laurenti, M.
1 / 8 shared
Roppolo, I.
2 / 12 shared
Stassi, S.
1 / 1 shared
-E., Coulon P.
1 / 1 shared
Gillono, M.
1 / 1 shared
Castellino, M.
1 / 10 shared
Pirri, C. F.
1 / 5 shared
Felfer, Peter Johann
1 / 72 shared
Choi, P.-P.
1 / 10 shared
Marceau, R. K. W.
1 / 5 shared
Bagot, P. A. J.
1 / 12 shared
Gault, B.
1 / 81 shared
Ringer, S. P.
1 / 12 shared
Moody, M. P.
1 / 19 shared
Haley, D.
1 / 12 shared
Cairney, J. M.
1 / 25 shared
Chakraborti, N.
1 / 4 shared
Suh, C.
1 / 2 shared
Pettersson, Frank
1 / 28 shared
Saxén, Henrik
1 / 32 shared
Chart of publication period
2019
2018
2015
2009

Co-Authors (by relevance)

  • Chiappone, A.
  • Bejtka, K.
  • Ricciardi, C.
  • F., Pirri C.
  • Cicero, G.
  • Bocchini, S.
  • Perrone, D.
  • Pandolfi, P.
  • Rizza, G.
  • Chiolerio, A.
  • Risplendi, F.
  • Laurenti, M.
  • Roppolo, I.
  • Stassi, S.
  • -E., Coulon P.
  • Gillono, M.
  • Castellino, M.
  • Pirri, C. F.
  • Felfer, Peter Johann
  • Choi, P.-P.
  • Marceau, R. K. W.
  • Bagot, P. A. J.
  • Gault, B.
  • Ringer, S. P.
  • Moody, M. P.
  • Haley, D.
  • Cairney, J. M.
  • Chakraborti, N.
  • Suh, C.
  • Pettersson, Frank
  • Saxén, Henrik
OrganizationsLocationPeople

article

Analyzing Sparse Data for Nitride Spinels Using Data Mining, Neural Networks, and Multiobjective Genetic Algorithms

  • Chakraborti, N.
  • Rajan, K.
  • Suh, C.
  • Pettersson, Frank
  • Saxén, Henrik
Abstract

Nitride spinels are typically characterized by their unique AB2N4 structure containing a divalent cation A, a trivalent cation B, and an anion N. Numerous such species may exist as metals, semiconductors, or semimetals leading to their extensive usage in diverse scientific and engineering fields. Experimental and theoretical data on the physical or material properties of nitride spinels are, however, severely limited for coming up with a data driven, generic description for their material properties. In this study we have attempted to establish a methodology for handling such sparse data where the various features of some of the state of the art soft computing tools like Genetic Algorithms, Data Mining, and Neural Networks are used in tandem to construct some generic predictive models, in principle applicable to the nitride spinel structures at large, irrespective of their electronic characteristics. The paucity of the available data was circumvented in this work with a data mining strategy, important inputs were identified through an evolving neural net, and finally, the best possible tradeoffs between the bulk moduli and the relative stabilization energies of the nitride spinels were identified by constructing the Pareto-frontier for them through a Genetic Algorithms-based multiobjective optimization strategy.

Topics
  • semiconductor
  • nitride