People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jarząbek, Dariusz
Institute of Fundamental Technological Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Role of the microstructure and the residual strains on the mechanical properties of cast tungsten carbide produced by different methods
- 2021Improved mechanical properties of W-Zr-B coatings deposited by hybrid RF magnetron – PLD methodcitations
- 2020Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputteringcitations
- 2020Size Effects of Hardness and Strain Rate Sensitivity in Amorphous Silicon Measured by Nanoindentationcitations
- 2020Enhancement of mechanical properties of vertically aligned carbon nanotube arrays due to N<sup>+</sup> ion irradiationcitations
- 2019Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide compositescitations
- 2018The impact of weak interfacial bonding strength on mechanical properties of metal matrix – ceramic reinforced compositescitations
- 2018The Influence of Alkali Metal Chloride Treatments on the Wear Resistance of Silicon Surfaces for Possible Use in MEMScitations
- 2018Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited compositescitations
- 2017Effect of metallic coating on the properties of copper-silicon carbide compositescitations
- 2017Investigations of interface properties in copper-silicon carbide compositescitations
- 2017Surface mechanical properties
- 2017The effect of metal coatings on the interfacial bonding strength of ceramics to copper in sintered Cu-SiC compositescitations
- 2016The Influence of the Particle Size on the Adhesion Between Ceramic Particles and Metal Matrix in MMC Compositescitations
- 2015The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix compositescitations
- 2015Influence of Alkali Ions on Tribological Properties of Silicon Surfacecitations
- 2014Elastic modulus and fracture strength evaluation on the nanoscale by scanning force microscope experimentscitations
- 2011Development of an experimental technique for testing rheological properties of ultrathin polymer films used in nanoimprint lithographycitations
- 2009Friction and adhesion of carbon nanotube brushescitations
Places of action
Organizations | Location | People |
---|
article
The Influence of Alkali Metal Chloride Treatments on the Wear Resistance of Silicon Surfaces for Possible Use in MEMS
Abstract
The wear of contacting silicon surfaces in microelectromechanical systems (MEMS) has been a longstanding concern. To address this issue, the effects of immersing silicon surfaces into alkali metal chloride solutions (LiCl, NaCl, CsCl) on their sliding friction and wear were investigated. A custom-built reciprocating tribometer was used with a sapphire ball as the counterbody. Results indicated that the friction coefficient between the silicon surface (p-doped, orientation (100)) and a sapphire ball can be reduced by up to 30% by treating the silicon surfaces in aqueous salt solutions (concentration 1 mol/L, exposure for 24 h). These modified surfaces also have higher wear resistance and a significant change in wettability. After immersion, the contact angle between the silicon surface and water was reduced by approximately 50%. These results may lead to new, simple, and inexpensive methods to increase the wear resistance of silicon surfaces for use in MEMs devices.