Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laurikka, Jari

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Characterization of the anisotropic deformation of the right ventricle during open heart surgery4citations

Places of action

Chart of shared publication
Järvelä, K.
1 / 1 shared
Lahti, J.
1 / 1 shared
Kuokkala, V. T.
1 / 8 shared
Soltani, A.
1 / 6 shared
Hokka, Mikko
1 / 52 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Järvelä, K.
  • Lahti, J.
  • Kuokkala, V. T.
  • Soltani, A.
  • Hokka, Mikko
OrganizationsLocationPeople

article

Characterization of the anisotropic deformation of the right ventricle during open heart surgery

  • Järvelä, K.
  • Lahti, J.
  • Kuokkala, V. T.
  • Soltani, A.
  • Laurikka, Jari
  • Hokka, Mikko
Abstract

<p>Digital Image Correlation (DIC) was used for studying the anisotropic behavior of the thin walled right ventricle of the human heart. Strains measured with Speckle Tracking Echocardiography (STE) were compared with the DIC data. Both DIC and STE were used to measure longitudinal strains of the right ventricle in the beginning of an open-heart surgery as well as after the cardiopulmonary bypass. Based on the results, the maximum end-systolic strains obtained with the DIC and STE change similarly during the surgery with less than 10% difference. The difference is largely due to the errors in matching the longitudinal direction in the two methods, sensitivity of the measurement to the positioning of the virtual extensometer of in both STE and DIC, and physiological difference of the measurements as the DIC measures the top surface of the heart whereas the STE obtains the data from below. The anisotropy of the RV was measured using full field principal strains acquired from the DIC displacement fields. The full field principal strains cover the entire region of interest instead of just two points as the virtual extensometer approach used by the STE. The principal strains are not direction dependent measures, and therefore are more independent of the anatomy of the patient and the exact positioning of the virtual strain gage or the STE probe. The results show that the longitudinal strains alone are not enough to fully characterize the behavior of the heart, as the deformation of the heart can be very anisotropic, and the anisotropy changes during the surgery, and from patient to patient.</p>

Topics
  • impedance spectroscopy
  • surface
  • laser emission spectroscopy
  • anisotropic