Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lim, Theodore

  • Google
  • 2
  • 4
  • 26

Heriot-Watt University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017A novel design engineering review system with searchable content: knowledge engineering via real-time multimodal recording22citations
  • 2012Predicting acoustic emission attenuation in small steel blocks using a ray tracing technique4citations

Places of action

Chart of shared publication
Ritchie, James Millar
1 / 1 shared
Sivanathan, Aparajithan
1 / 1 shared
Reuben, Bob
1 / 32 shared
Shaib, Mohamed El
1 / 1 shared
Chart of publication period
2017
2012

Co-Authors (by relevance)

  • Ritchie, James Millar
  • Sivanathan, Aparajithan
  • Reuben, Bob
  • Shaib, Mohamed El
OrganizationsLocationPeople

article

A novel design engineering review system with searchable content: knowledge engineering via real-time multimodal recording

  • Ritchie, James Millar
  • Sivanathan, Aparajithan
  • Lim, Theodore
Abstract

Cradle to grave product support has been a key issue in the engineering sector over many years, particularly because product engineering legacy knowledge is often lost during the product development process unless rigorously captured in some way. This is particularly the case during formal design reviews at any point during a product’s lifecycle where engineering changes are not fully documented or where salient but important aspects of decision making are difficult to document explicitly. Though many software systems are available to support design reviews, they have not necessarily met the expectations of industry. Consequently, traditional knowledge capture methods tend to be time-consuming, costly and disruptive leading to many companies simply giving up on this crucial aspect of product development. <br/>This paper presents research carried out with regard to prototyping and testing a potential knowledge engineering capture and reuse solution, demonstrating real-time user-loggingusing virtual design environments focused on team-based design ‘reviews’. Called the Virtual Aided Design Engineering Review (VADER) system, it provides millisecond precision time-phased knowledge capture in an automatic and unobtrusive manner. Both structured and unstructured data are synthesised via a ubiquitous integration and temporal synchronisation (UbiITS) framework that enables interactive information mapping, retrieval and mining. VADER’s frontend includes a virtual reality based 3D model view display as a multiuser collaborative<br/>interface and an auxiliary web interface for concurrent access by multiple distributed users during product design discussions. Feedback from engineers using the system demonstrated that this concept is one which believe would substantially enhance their engineering task knowledge capture, rapid retrieval and reuse capability. It was also surmised that, if required, such a system can be extended throughout the whole product development process capturing individual and team-based engineers’ inputs across the whole cradle-to-grave product life cycle. Also, due to its generic nature, this approach is not limited only to engineering applications or virtual environments but can potentially be used in other sectors using computer-based technologies of any kind.

Topics
  • impedance spectroscopy