People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dhokia, Vimal
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023A Feasibility Study for Additively Manufactured Composite Tooling
- 2023The state-of-the-art of wire arc directed energy deposition (WA-DED) as an additive manufacturing process for large metallic component manufacturecitations
- 2023Additively manufactured cure tools for composites manufacturecitations
- 2023Characterisation of residual stresses and oxides in titanium, nickel, and aluminium alloy additive manufacturing powders via synchrotron X-ray diffractioncitations
- 2022A FEASIBILITY STUDY OF ADDITIVELY MANUFACTURED COMPOSITE TOOLING
- 2021Effects of in-process LN2 cooling on the microstructure and mechanical properties of Type 316L stainless steel produced by wire arc directed energy depositioncitations
- 2019Characterisation of austenitic 316LSi stainless steel produced by wire arc additive manufacturing with interlayer cooling
- 2018Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturingcitations
- 2018Edge trimming of carbon fibre reinforced plasticcitations
- 2016Comparative investigation on using cryogenic machining in CNC milling of Ti-6Al-4V titanium alloycitations
- 2016Cryogenic High Speed Machining of Cobalt Chromium Alloycitations
- 2016Hybrid additive and subtractive machine tools - research and industrial developmentscitations
- 2016Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloycitations
- 2015Experimental Framework for Testing the Finishing of Additive Parts
- 2015Image Processing for Quantification of Machining Induced Changes in Subsurface Microstructure
- 2015Investigation of Cutting Parameters in Sustainable Cryogenic End Milling
- 2014Effect of machining environment on surface topography of 6082 T6 aluminium
- 2013A surface roughness and power consumption analysis when slot milling austenitic stainless steel in a dry cutting environmentcitations
- 2013A Surface Roughness and Power Consumption Analysis When Slot Milling Austenitic Stainless Steel in a Dry Cutting Environmentcitations
- 2013State-of-the-art cryogenic machining and processingcitations
- 2012Evaluation of Cryogenic CNC Milling of Ti-6Al-4V Titanium Alloy
- 2012Cryogenic Machining of Carbon Fibre
- 2012An initial study of the effect of using liquid nitrogen coolant on the surface roughness of inconel 718 nickel-based alloy in CNC millingcitations
- 2012An initial study of the effect of using liquid nitrogen coolant on the surface roughness of inconel 718 nickel-based alloy in CNC millingcitations
- 2012Study of Cryogenics in CNC Milling of Metal Alloys
- 2012Study of the effects of cryogenic machining on the machinability of Ti-6Al-4V titanium alloy
- 2012Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluidscitations
- 2011Adiabatic shear band formation as a result of cryogenic CNC machining of elastomerscitations
- 2010The formation of adiabatic shear bands as a result of cryogenic CNC machining of elastomerscitations
Places of action
Organizations | Location | People |
---|
article
The state-of-the-art of wire arc directed energy deposition (WA-DED) as an additive manufacturing process for large metallic component manufacture
Abstract
Wire Arc Directed Energy Deposition (WA-DED) also known as Wire Arc Additive<br/>Manufacture (WAAM) is a niche additive manufacturing technique for metals that is increasingly offering a competitive advantage to traditional forging and casting methods. Characteristics of WA-DED are high deposition rates and feedstock that is inexpensive compared to powder processes, making it highly efficient for manufacture of large components. This paper reviews WA-DED as a technique for large component manufacture by assessing aspects of the process scalability. Arc processes are compared in terms of their production characteristics showing the relative suitability of each power source. Additional in-situ processes have been identified that can alleviate defects and improve mechanical performance. Investigation of process planning for WA-DED has revealed the potential for material savings that can be achieved by preventing accumulation of errors throughout manufacture. The major finding is that additional in-situ processes and process planning combined with a closed loop feed forward control system can significantly improve the process in terms of mechanical performance, geometric repeatability and resolution. Additionally, it was found that although the degree of isotropy of mechanical performance is commonly investigated, research into the heterogeneity of mechanical performance is limited, and does not assess tensile properties at different locations within deposited material.