Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adams, Michael

  • Google
  • 10
  • 35
  • 249

University of Birmingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2018Inkjet-Printed Photoluminescent Patterns of Aggregation-Induced-Emission Chromophores on Surface-Anchored Metal–Organic Frameworks25citations
  • 2018Temperature and configurational effects on the Young’s modulus of poly (methyl methacrylate)20citations
  • 2018Reaction of porphyrin-based surface-anchored metal-organic frameworks to prolonged illuminationcitations
  • 2018Reaction of porphyrin-based surface-anchored metal–organic frameworks caused by prolonged illuminationcitations
  • 2017Contact mechanics of the human finger pad under compressive loads78citations
  • 2017Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules9citations
  • 2017Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules9citations
  • 2011Effect of batch size on mechanical properties of granules in high shear granulation34citations
  • 2009Microscopic interpretation of granule strength in liquid media4citations
  • 2005On the interpretation of orifice extrusion data for viscoplastic materials70citations

Places of action

Chart of shared publication
Richards, Bryce S.
5 / 23 shared
Hernandez-Sosa, Gerardo
1 / 13 shared
Howard, Ian A.
5 / 21 shared
Shustova, Natalia B.
1 / 2 shared
Baroni, Nicolò
4 / 4 shared
Schlisske, Stefan
1 / 1 shared
Turshatov, Andrey
5 / 5 shared
Dolgopolova, Ekaterina A.
1 / 2 shared
Sahputra, Iwan Halim
1 / 1 shared
Alexiadis, Alessio
1 / 4 shared
Baroni, Nicolo
1 / 2 shared
Macqueen, Rowan W.
2 / 6 shared
Emandi, Ganapathi
2 / 2 shared
Oldenburg, Michael
4 / 4 shared
Kraffert, Felix
2 / 3 shared
Senge, Mathias O.
2 / 2 shared
Haldar, Ritesh
4 / 12 shared
Lips, Klaus
2 / 10 shared
Wöll, Christof
3 / 15 shared
Behrends, Jan
2 / 19 shared
Busko, Dmitry
4 / 6 shared
Johnson, Simon
1 / 1 shared
Dzidek, Brygida
1 / 1 shared
Andrews, James
1 / 2 shared
Zhang, Zhibing
1 / 7 shared
Redel, Engelbert
2 / 7 shared
Welle, Alexander
2 / 47 shared
Salman, Ad
1 / 1 shared
Hounslow, Mj
1 / 1 shared
Mangwandi, Chirangano
1 / 5 shared
Hounslow, M.
1 / 1 shared
Salman, A.
1 / 2 shared
Cheong, Y.
1 / 1 shared
Basterfield, Ra
1 / 1 shared
Lawrence, Cj
1 / 1 shared
Chart of publication period
2018
2017
2011
2009
2005

Co-Authors (by relevance)

  • Richards, Bryce S.
  • Hernandez-Sosa, Gerardo
  • Howard, Ian A.
  • Shustova, Natalia B.
  • Baroni, Nicolò
  • Schlisske, Stefan
  • Turshatov, Andrey
  • Dolgopolova, Ekaterina A.
  • Sahputra, Iwan Halim
  • Alexiadis, Alessio
  • Baroni, Nicolo
  • Macqueen, Rowan W.
  • Emandi, Ganapathi
  • Oldenburg, Michael
  • Kraffert, Felix
  • Senge, Mathias O.
  • Haldar, Ritesh
  • Lips, Klaus
  • Wöll, Christof
  • Behrends, Jan
  • Busko, Dmitry
  • Johnson, Simon
  • Dzidek, Brygida
  • Andrews, James
  • Zhang, Zhibing
  • Redel, Engelbert
  • Welle, Alexander
  • Salman, Ad
  • Hounslow, Mj
  • Mangwandi, Chirangano
  • Hounslow, M.
  • Salman, A.
  • Cheong, Y.
  • Basterfield, Ra
  • Lawrence, Cj
OrganizationsLocationPeople

article

Temperature and configurational effects on the Young’s modulus of poly (methyl methacrylate)

  • Sahputra, Iwan Halim
  • Alexiadis, Alessio
  • Adams, Michael
Abstract

<p>The effects of the configuration and temperature on the Young’s modulus of poly (methyl methacrylate) (PMMA) have been studied using molecular dynamics simulations. For the DREIDING force field under ambient temperatures, increasing the number of monomers significantly increases the modulus of isotactic and syndiotactic PMMA while the isotactic form has a greater modulus. The effects of temperature on the modulus of isotactic PMMA have been simulated using the DREIDING, AMBER, and OPLS force fields. All these force fields predict the effects of temperature on the modulus from 200 to 350 K that are in close agreement with experimental values, while at higher temperatures the moduli are greater than those measured. The glass transition temperature determined by the force fields, based on the variation of the modulus with temperature, is greater than the experimental values, but when obtained from a plot of the volume as a function of the temperature, there is closer agreement. The Young’s moduli calculated in this study are in closer agreement to the experimental data than those reported by previous simulations.</p>

Topics
  • impedance spectroscopy
  • simulation
  • glass
  • glass
  • molecular dynamics
  • glass transition temperature