Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marmier, A.

  • Google
  • 2
  • 7
  • 370

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010ElAM: A computer program for the analysis and representation of anisotropic elastic properties350citations
  • 2006Application of molecular dynamics DL_POLY codes to interfaces of inorganic materials20citations

Places of action

Chart of shared publication
Parker, Stephen C.
1 / 33 shared
Evans, K. E.
1 / 5 shared
Walton, R. I.
1 / 2 shared
Lethbridge, Z. A. D.
1 / 1 shared
Smith, C. W.
1 / 4 shared
Spagnoli, Dino
1 / 4 shared
Sayle, D. C.
1 / 5 shared
Chart of publication period
2010
2006

Co-Authors (by relevance)

  • Parker, Stephen C.
  • Evans, K. E.
  • Walton, R. I.
  • Lethbridge, Z. A. D.
  • Smith, C. W.
  • Spagnoli, Dino
  • Sayle, D. C.
OrganizationsLocationPeople

article

Application of molecular dynamics DL_POLY codes to interfaces of inorganic materials

  • Spagnoli, Dino
  • Sayle, D. C.
  • Marmier, A.
Abstract

<p>Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium oxide, which remain highly crystalline and combine in a highly structural specific way.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • mineral
  • surface
  • amorphous
  • mobility
  • Oxygen
  • Magnesium
  • Magnesium
  • molecular dynamics
  • Calcium
  • magnesium oxide