People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hassan, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2021Tig Welding of Dissimilar Steelcitations
- 2021Effect of titanium alloy powder reinforcement on the mechanical properties and microstructural evolution of gmaw mild steel butt jointscitations
- 2021Investigation of the Mechanical and Microstructural Properties of TIG Welded Ti6Al4V Alloycitations
- 2021Experimental investigation of titanium alloy powder reinforcement in GMAW mild steel lap joints
- 2020Wear behavior of laser metal deposited 17-4 PH SS-W composite at varied tungsten powder flow ratecitations
- 2020Laser metal deposition of titanium compositescitations
- 2020Effect of process parameters on the hardness property of laser metal deposited al–cu–ti coatings on ti–6al–4v alloycitations
- 2020Experimental investigation of laser metal deposited al–cu–ti coatings on ti–6al–4v alloy
- 2020Effect of processing parameters on corrosion behaviour of Al reinforced with Ni-40Fe-10Ti alloy fabricated by FSPcitations
- 2020Study of additive manufactured ti–al–si–cu/ti–6al–4v composite coating by direct laser metal deposition (dlmd) techniquecitations
- 2020A multifractal study of al thin films prepared by rf magnetron sputteringcitations
- 2019Non-isothermal drying kinetics of human fecescitations
Places of action
Organizations | Location | People |
---|
article
Non-isothermal drying kinetics of human feces
Abstract
<p>The non-isothermal drying behavior and kinetics of human feces (HF) were investigated by means of thermogravimetric analysis to provide data for designing a drying unit operation. The effect of heating rate and blending with woody biomass were also evaluated on drying pattern and kinetics. At low heating rate (1 K/min), there is effective transport of moisture, but a higher heating rate would be necessary at low moisture levels to reduce drying time. Blending with wood biomass improves drying characteristics of HF. The results presented in this study are relevant for designing non-sewered sanitary systems with in-situ thermal treatment.</p>