Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aswathi, R.

  • Google
  • 1
  • 5
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Numerical and Experimental Evaluation of Ceramic Honeycombs for Thermal Energy Storage13citations

Places of action

Chart of shared publication
Khivsara, Sagar D.
1 / 1 shared
Madhusoodana, C. D.
1 / 1 shared
Das, Rathindra Nath
1 / 1 shared
Srikanth, Ojasve
1 / 1 shared
Dutta, Pradip
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Khivsara, Sagar D.
  • Madhusoodana, C. D.
  • Das, Rathindra Nath
  • Srikanth, Ojasve
  • Dutta, Pradip
OrganizationsLocationPeople

article

Numerical and Experimental Evaluation of Ceramic Honeycombs for Thermal Energy Storage

  • Khivsara, Sagar D.
  • Aswathi, R.
  • Madhusoodana, C. D.
  • Das, Rathindra Nath
  • Srikanth, Ojasve
  • Dutta, Pradip
Abstract

<p>Thermal energy storage at high temperature is a challenging research area with typical applications like regenerative heating in steel production plants and auxiliary energy source in solar thermal plants. Honeycomb structures made of ceramics are used as high temperature thermal energy storage units because of their large heat transfer surface area per unit volume, large thermal capacity and good thermal shock resistance. The material properties and geometric parameters of these units determine the storage capacity and heat addition/retrieval rate. A thorough understanding of the thermal response of storage unit at different process conditions is crucial for designing the system. In this work, new compositions of mullite and chromite based ceramic honeycombs were developed for high temperature thermal storage application. An experiment was designed to evaluate the performance of the ceramic honeycomb in the temperature range of 773-1273 K by studying the storing and discharging characteristics in cyclic mode. Numerical studies using ANSYS Fluent have been presented to predict the effect of honeycomb design, material properties and flow rates on thermal energy storage and heat transfer characteristics. This data are used to validate the experimental results and for designing an optimum thermal energy storage system.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • steel
  • thermal shock resistance
  • mullite