Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tohmura, S-C

  • Google
  • 1
  • 2
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Using renewables in panelboard resins to influence volatile organic compound emissions from panels5citations

Places of action

Chart of shared publication
Miyamoto, K.
1 / 2 shared
Grigsby, Warren
1 / 22 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Miyamoto, K.
  • Grigsby, Warren
OrganizationsLocationPeople

article

Using renewables in panelboard resins to influence volatile organic compound emissions from panels

  • Tohmura, S-C
  • Miyamoto, K.
  • Grigsby, Warren
Abstract

<p>Technical lignin and condensed tannins have been combined with soy flour as model of no-added-formaldehyde adhesive binders for veneer wood products to understand their impacts on volatile organic compounds (VOCs) produced during panel manufacture. VOC emissions captured on manufacturing lauan hardwood plywood at 170˚C were dominated by acetaldehyde, hexaldehyde, acetone, and terpenes in both the condensate and gaseous fractions of press emissions. Other aldehydes including formaldehyde, valeraldehyde, and propionaldehyde were produced in relatively lower quantity during panel manufacture. Compared to using soy flour alone, lignin, and tannin reduced the formaldehyde and acetaldehyde contents in press emissions. These reductions in VOCs had a dependency on adhesive resin pH with an alkaline formulation proving to also decrease longer chain aldehydes such as valeraldehyde and hexaldehyde. Chamber testing plywood panels found the composition of VOC emissions initially released from panels to be prominent compounds released in press emissions formed on panel manufacture. Use of soy flour alone as binder produced relatively high acetaldehyde emissions from panels, whereas incorporating lignin and tannin with soy flour as adhesive binders reduced both acetaldehyde and formaldehyde emissions from panelboards post-manufacture.</p>

Topics
  • compound
  • lignin
  • wood
  • resin
  • aldehyde