Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Volkmer, T.

  • Google
  • 1
  • 2
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Evaluating the extent of bio-polyester polymerization in solid wood by thermogravimetric analysis17citations

Places of action

Chart of shared publication
Noel, Marian
1 / 1 shared
Grigsby, Warren
1 / 22 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Noel, Marian
  • Grigsby, Warren
OrganizationsLocationPeople

article

Evaluating the extent of bio-polyester polymerization in solid wood by thermogravimetric analysis

  • Noel, Marian
  • Volkmer, T.
  • Grigsby, Warren
Abstract

The extent of bio-polyester oligomer polymerization within solid wood and the resulting thermal stability of the treated wood have been evaluated by thermogravimetric analysis(TGA). Low molecular weight oligomers of poly(lactic acid),poly(glycolic acid),poly(butylene succinate)and poly(butylene adipate)were impregnated and then thermally polymerized within solid wood to enhance physical properties of the treated wood. TGA revealed a similar degree of oligomer polymerization was achieved either in pure form or within the wood structure. The influence of relatively acidic treatments such as low molecular weight poly(glycolic acid)oligomers was observed to lead to degradation of the hemicellulose wood component. Polymerization of poly(lactic acid)and poly(glycolic acid)oligomers treatments which penetrate wood cell wall gave relatively greater wood thermal stability. Treatment and polymerization of lumen filling poly(butylene succinate)and poly(butylene adipate)oligomers contributed to lower wood thermal stability.

Topics
  • thermogravimetry
  • wood
  • molecular weight