People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miranda, Rm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2019Evaluation of the amount of nanoparticles emitted in LASER additive manufacture/weldingcitations
- 2017Experimental characterization of nanoparticles emissions during Laser Shock Processing of AA6061, AISI304 and Ti6Al4V
- 2017Determination of "safe" and "critical" nanoparticles exposure to welders in a workshopcitations
- 2015Assessment and control of nanoparticles exposure in welding operations by use of a Control Banding Toolcitations
- 2014The effect of metal transfer modes and shielding gas composition on the emission of ultrafine particles in MAG steel weldingcitations
- 2014EMISSION OF NANOPARTICLES DURING FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYScitations
- 2014Characterization of airborne particles generated from metal active gas welding processcitations
- 2012Comparison of deposited surface area of airborne ultrafine particles generated from two welding processescitations
- 2006Fume emissions during gas metal arc weldingcitations
- 2005Analysis of welding fumes: A short note on the comparison between two sampling techniquescitations
Places of action
Organizations | Location | People |
---|
article
Analysis of welding fumes: A short note on the comparison between two sampling techniques
Abstract
It is well established that welding fumes contain toxic substances, and that its composition is dependent on multiple factors, such as nature of the welding process and chemical compositions of the welding consumables and base materials. In order to prevent accidents and, thus to contribute to the safety of protection of welders, the establishment of a database on welding fume components is considered as essential. This has led to the development and upgradation of sampling techniques of welding fumes. Up to now, few standard techniques exist in this area. This study describes the results of the analysis of welding fumes, in terms of heavy metals, for a set of welding electrodes commonly used in carbon steel manufacture. Sampling was done by two different techniques: using the one currently known as "fume box" and common techniques in workplace atmospheres. © 2005 Taylor & Francis.