People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gadd, Geoffrey Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Fungal biorecovery of cerium as oxalate and carbonate biomineralscitations
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2022Fungal-induced CaCO3 and SrCO3 precipitationcitations
- 2019Enhanced antibacterial and anti-adhesive activities of silver–PTFE nanocomposite coating for urinary catheterscitations
- 2019Enhanced Antibacterial and Antiadhesive Activities of Silver-PTFE Nanocomposite Coating for Urinary Catheterscitations
- 2019Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus nigercitations
- 2019Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungicitations
- 2009Phenol degradation by Fusarium oxyrsporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxidecitations
Places of action
Organizations | Location | People |
---|
article
Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus niger
Abstract
<p>The bioleaching efficiency and mechanism of recovery of cobalt (Co) and nickel from laterites and pyritic ores by <i>Aspergillus niger</i> were investigated. Recoveries of Co from laterites and pyritic ores by direct bioleaching were 65.9 ± 1.8% and 4.9 ± 2.7%, respectively, while 30.9 ± 0.6% and 10.9 ± 6.2% recovery of Ni were obtained from laterites and pyritic ores, respectively. Recovery of Co via indirect bioleaching in the absence of the fungal biomass from laterite was significantly lower when compared with Co released by direct bioleaching. In the latter, hyphal penetration and colonization of the laterites were clearly observed by scanning electron microscopy (SEM). X-ray powder diffraction (XRPD) analysis of mineral phases before and after bioleaching indicated that cobalt-bearing goethite was the main phase bioleached in the laterites. No significant difference was found between Co recoveries from synthesized cobalt-bearing goethite by both direct and indirect bioleaching. Therefore, we propose that two processes are involved in bioleaching from laterites: (1) cobalt-bearing goethite was exposed via direct interactions between the fungus and the minerals and (2) cobalt-bearing goethite was dissolved by released metabolites of <i>A. niger</i>, such as organic acids. An incongruent pattern of Co and Fe bioleaching from the laterites was also a feature of the metal recovery process.</p>