People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouvier, Pierre
Institut Néel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023VO2 under hydrostatic pressure: Isostructural phase transition close to a critical end-pointcitations
- 2019Three-phase metal-insulator transition and structural alternative for a VO2 film epitaxially grown on Al2O3(0001)citations
- 2015High pressure single crystal x-ray and neutron powder diffraction study of the ferroelectric-paraelectric phase transition in PbTiO3citations
- 2014Jahn-Teller, Polarity, and Insulator-to-Metal Transition in BiMnO3 at High Pressurecitations
- 2012X-ray diffraction from stishovite under nonhydrostatic compression to 70 GPa: Strength and elasticity across the tetragonal → orthorhombic transitioncitations
- 2011High-pressure polarized Raman spectra of Gd(2)(MoO(4))(3): phase transitions and amorphizationcitations
- 2010Absence of pressure-induced amorphization in LiKSO4citations
- 2010Pressure-temperature phase diagram of SrTiO3 up to 53 GPacitations
- 2009Single crystal growth of BiMnO3 under high pressure-high temperature
- 2007Comparative study and imaging by PhotoElectroChemical techniques of oxide films thermally grown on zirconium and Zircaloy-4citations
- 2007Structural evolution of (Ca 0.35 Sr 0.65 )TiO 3 perovskite at high pressurescitations
- 2006Hot compaction of nanocrystalline TiO<sub>2</sub> (anatase) ceramics. Mechanisms of densification: Grain size and doping effectscitations
- 2006Raman scattering of the model multiferroic oxide BiFeO 3 : effect of temperature, pressure and stresscitations
- 2006Raman scattering of the model multiferroic oxide BiFeO<sub>3</sub>: effect of temperature, pressure and stresscitations
- 2006SnO 2 /MoO 3 -nanostructure and alcohol detectioncitations
- 2006Raman Imaging and Kelvin Probe Microscopy for the Examination of the Heterogeneity of Doping in Polycrystalline Boron-Doped Diamond Electrodes
- 2006Raman spectroscopy of Cs<SUB>2</SUB>HgBr<SUB>4</SUB> at high-pressure: effect of hydrostaticitycitations
- 2006Raman spectroscopy of Cs 2 HgBr 4 at high-pressure: effect of hydrostaticitycitations
- 2005The high-pressure structural phase transitions of sodium bismuth titanatecitations
- 2004Decomposition of LiGdF 4 scheelite at high pressurescitations
- 2003Quantification of Chemical Pressure in Doped Nanostructured Zirconia Ceramicscitations
- 2002X-ray diffraction study of WO 3 at high pressurecitations
- 2002X-ray diffraction study of WO<sub>3</sub> at high pressurecitations
- 2000Raman study of phases and stresses distributions in oxidation scales of Zirconim alloys: spectroscopic study of pressure and temperature effects on different nanometric Zirconia
Places of action
Organizations | Location | People |
---|
article
Raman scattering of the model multiferroic oxide BiFeO<sub>3</sub>: effect of temperature, pressure and stress
Abstract
The perovskite Bismuth ferrite BiFeO<sub>3</sub> (BFO) is considered to be a model multiferroic and offers a rare multiferroelectric robustness since it presents a coexistence of ferroelectric and antiferromagnetic order up to unusually high temperatures. Perovskite-type materials are known for their common structural instabilities which can be driven by diverse external parameters like temperature, pressure, stress etc. Such instabilities and the associated structural distortions are often very subtle and difficult to detect by techniques probing the average structure such as X-ray diffraction. Here we present an investigation of the BFO phonon spectrum by the local probe Raman spectroscopy as a function of polarization, temperature and pressure. We review a recent temperature-dependent Raman investigation which illustrates a first-order structural phase transition at the ferroelectric Curie temperature. Our temperature dependence results further indicate a phonon-anomaly around the magnetic Néel temperature, which is discussed in the light of multiferroicity. We will further illustrate that BFO presents important pressure-induced structural instabilities and we discuss the role of such instabilities for the understanding of strained thin film BFO which show distinct properties compared to the bulk.