People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Andersen, Shuang Ma
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2022Post-degradation case study of the membrane electrode assembly from a low-temperature PEMFC stack
- 2022Post-degradation case study of the membrane electrode assembly from a low-temperature PEMFC stack
- 2022Microwave-Assisted Scalable Synthesis of Pt/Ccitations
- 2022Microwave-Assisted Scalable Synthesis of Pt/C:Impact of the Microwave Irradiation and Carrier Solution Polarity on Nanoparticle Formation and Aging of the Support Carboncitations
- 2022Insights into Degradation of the Membrane–Electrode Assembly Performance in Low-Temperature PEMFC:the Catalyst, the Ionomer, or the Interface?citations
- 2022Towering non-Faradaic capacitive storage based on high quality reduced graphene oxide from spent graphitecitations
- 2022Insights into Degradation of the Membrane–Electrode Assembly Performance in Low-Temperature PEMFCcitations
- 2021Degradation mechanisms of electrochemical activity of Pt/C during the accelerated stress test focused on catalyst support corrosion
- 2020Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO 2 , PVA/Sulfosuccinic Acid (SSA) and PVA/SiO 2 /SSA Membranes:A Comparative Studycitations
- 2020Solution combustion synthesized ceria or alumina supported Pt as cathode electrocatalyst for PEM fuel cellscitations
- 2020Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO2, PVA/Sulfosuccinic Acid (SSA) and PVA/SiO2/SSA Membranescitations
- 2020Platinum recycling through electroless dissolution under mild conditions using a surface activation assisted Pt-complexing approachcitations
- 2020Platinum recycling through electroless dissolution under mild conditions using a surface activation assisted Pt-complexing approachcitations
- 2019Influence of dispersion media on Nafion® ionomer distribution in proton exchange membrane fuel cell catalyst carbon supportcitations
- 2019Influence of dispersion media on Nafion® ionomer distribution in proton exchange membrane fuel cell catalyst carbon supportcitations
- 2018Accurate Determination of Catalyst Loading on Glassy Carbon Disk and Its Impact on Thin Film Rotating Disk Electrode for Oxygen Reduction Reactioncitations
- 2018Exploring the XRF technique as a tool to estimate the degree of leaching in alloy-catalysts used for PEMFCs
- 2018Environmentally and industrially friendly recycling of platinum nanoparticles through electrochemical dissolution–electrodeposition in acid‐free/dilute acidic electrolytescitations
- 2018Environmentally and industrially friendly recycling of platinum nanoparticles through electrochemical dissolution–electrodeposition in acid‐free/dilute acidic electrolytescitations
- 2018Accurate determination of catalyst loading on glassy carbon disk and its impact on thin film rotating disk electrode for oxygen reduction reaction.
- 2018Investigating the single-step solution combustion method for synthesis of oxide supported/unsupported Pt/PtOx, as cathode electrocatalysts for PEMFCs
- 2017Helium Ion Microscopy of proton exchange membrane fuel cell electrode structurescitations
- 2017Helium Ion Microscopy of proton exchange membrane fuel cell electrode structurescitations
- 2016Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structurescitations
- 2015Tin Dioxide as an Effective Antioxidant for Proton Exchange Membrane Fuel Cellscitations
- 2015Tin Dioxide as an Effective Antioxidant for Proton Exchange Membrane Fuel Cellscitations
- 2014Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalystscitations
- 2014Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalystscitations
- 2013Durability of Carbon Nanofiber (CNF) & Carbon Nanotube (CNT) as Catalyst Support for Proton Exchange Membrane Fuel Cellscitations
- 2012Interaction between Nafion ionomer and noble metal catalyst for PEMFCs
Places of action
Organizations | Location | People |
---|
article
Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO2, PVA/Sulfosuccinic Acid (SSA) and PVA/SiO2/SSA Membranes
Abstract
<p>New organic–inorganic nanocomposites based on PVA, SiO<sub>2</sub> and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (∼ 10 nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO<sub>2</sub> membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO<sub>2</sub> membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO<sub>2</sub> membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.</p>