People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carbas, Rjc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Study on out-of-plane tensile strength of angle-plied reinforced hybrid CFRP laminates using thin-plycitations
- 2022A study of the fracture mechanisms of hybrid carbon fiber reinforced polymer laminates reinforced by thin-plycitations
- 2021Design of a new pneumatic impact actuator of a Split Hopkinson Pressure Bar (SHPB) setup for tensile and compression testing of structural adhesivescitations
- 2021Determination of fracture toughness of an adhesive in civil engineering and interfacial damage analysis of carbon fiber reinforced polymer-steel structure bonded jointscitations
- 2021Novel torsion machine to test adhesive jointscitations
- 2020Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethanecitations
- 2019A strategy to reduce delamination of adhesive joints with composite substratescitations
- 2014Effect of Cure Temperature on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesivescitations
- 2013Effect of post-cure on the glass transition temperature and mechanical properties of epoxy adhesivescitations
- 2012EFFECT OF CURE TEMPERATURE ON THE GLASS TRANSITION TEMPERATURE OF AN EPOXY ADHESIVE
Places of action
Organizations | Location | People |
---|
article
Effect of Cure Temperature on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesives
Abstract
This paper describes the influence of the curing temperature on the physical and mechanical properties of three structural adhesives. This work was undertaken to improve the understanding of the effect of curing temperature in the glass transition temperature, T-g, and stiffness of epoxy adhesives. The mechanical properties (Young's modulus and yield strength) of the adhesives were measured in bulk specimens. T-g was measured by a dynamic mechanical analysis using an in-house developed apparatus. The curing process was the same for all tests, consisting of a curing stage followed by a post cure stage. The initial stage was performed at different temperatures. T-g and the mechanical properties was found to vary as a function of the cure temperature of the adhesive. When cured below the cure temperature, T-cure, at which the T-g of the fully cured network, T-g , is achieved, the strength and stiffness of the adhesive increase as the cure temperature increases and the T-g is higher than the cure temperature. When cured above the T-cure at which the T-g is achieved, the strength and stiffness decrease as the cure temperature increases and the T-g is higher than the cure temperature.