People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sukhomlinov, Dmitry
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Oxidation Behavior of AlxHfNbTiVY0.05 Refractory High-Entropy Alloys at 700–900 °Ccitations
- 2023Modelling Charring and Burning of Spruce and Pine Woods During Pyrolysis, Smoldering and Flamingcitations
- 2021Distribution of Co, Fe, Ni, and precious metals between blister copper and white metalcitations
- 2020Recovery of Precious Metals (Au, Ag, Pt, and Pd) from Urban Mining Through Copper Smeltingcitations
- 2020Trace element distributions between matte and slag in direct nickel matte smeltingcitations
- 2019Behavior of Ga, In, Sn, and Te in Copper Matte Smeltingcitations
- 2019Impact of MgO and K2O on Slag-Nickel Matte Equilibriacitations
- 2019Slag Cleaning Equilibria in Iron Silicate Slag–Copper Systemscitations
- 2017Thermal stabilities and properties of equilibrium phases in the Pt-Te-O systemcitations
Places of action
Organizations | Location | People |
---|
article
Trace element distributions between matte and slag in direct nickel matte smelting
Abstract
<p>Behaviour of trace elements in the nickel matte smelting was studied at 1673 K (1400 degrees C) by equilibration-quenching techniques followed by direct phase analyses using electron probe X-ray microanalysis and laser ablation-inductively coupled plasma-mass spectrometry. The matte-slag samples at silica saturation were equilibrated with SO2-CO-CO2-Ar mixtures of fixed p(SO2), p(S2) and p(O2) in order to obtain a pre-determined oxidation degree for the sulphide matte, and thus to generate a targeted iron concentration of the nickel-copper-iron sulphide matte (Ni:Cu = 5, w/w), depending on the slag chemistry. The slag composition was varied from 0 to 2 wt-% K2O and 0-10 wt-% MgO in silica saturation. The studied trace elements were Co, Ge, Pb, Se and Sn, but also the matte-to-slag distributions of the slag forming fluxing components Mg (MgO) and Si (SiO2) were determined experimentally. Selenium was the only trace element studied which strongly enriched in the low-iron nickel mattes, and the deportment became larger when the sulphide matte depleted with iron. All the other trace elements behaved in the opposite way.</p>