Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wan, X.

  • Google
  • 5
  • 47
  • 209

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation51citations
  • 2018Correction: Efficient non-fullerene organic solar cells employing sequentially deposited donor-acceptor layers (Journal of Materials Chemistry A (2018) 6 (18225–18233) DOI: 10.1039/C8TA06860G)2citations
  • 2018Efficient non-fullerene organic solar cells employing sequentially deposited donor-acceptor layers61citations
  • 2016High efficiency and stability small molecule solar cells developed by bulk microstructure fine-tuning63citations
  • 2007Characterization of a globin-coupled oxygen sensor with a gene-regulating function32citations

Places of action

Chart of shared publication
Futscher, M. H.
1 / 4 shared
Ducati, C.
1 / 44 shared
Gu, Q.
1 / 5 shared
Lami, V.
1 / 2 shared
Cho, C.
1 / 2 shared
Ehrler, B.
1 / 18 shared
Credgington, D.
1 / 13 shared
Zhang, J.
3 / 62 shared
Friend, Richard, H.
3 / 549 shared
Divitini, G.
1 / 24 shared
Kan, B.
4 / 4 shared
Vaynzof, Y.
1 / 26 shared
Kosasih, F. U.
1 / 3 shared
Pearson, A. J.
3 / 12 shared
Sadhanala, A.
1 / 60 shared
Greenham, N. C.
3 / 70 shared
Bakulin, A. A.
3 / 16 shared
Chen, Y.
4 / 71 shared
Hopper, T. R.
2 / 2 shared
Liu, X.-K.
2 / 2 shared
Conaghan, P. J.
2 / 3 shared
Wu, Y.
2 / 43 shared
Gao, F.
2 / 20 shared
Cooper, J. F. K.
2 / 4 shared
Parnell, A. J.
2 / 6 shared
Rechberger, S.
1 / 1 shared
Heumüller, T.
1 / 8 shared
Min, J.
1 / 34 shared
Ade, H.
1 / 5 shared
Spiecker, E.
1 / 72 shared
Guldi, D. M.
1 / 10 shared
Brabec, Cj
1 / 407 shared
Sgobba, V.
1 / 5 shared
Jiao, X.
1 / 7 shared
Alam, M.
1 / 4 shared
Fago, Angela
1 / 1 shared
Hoogewijs, D.
1 / 1 shared
Coletta, M.
1 / 1 shared
Weber, Roy E.
1 / 1 shared
Doorslaer, S. Van
1 / 1 shared
Thijs, L.
1 / 2 shared
Moens, L.
1 / 1 shared
Ascenzi, P.
1 / 1 shared
Vinck, E.
1 / 1 shared
Dewilde, S.
1 / 3 shared
Bolli, A.
1 / 1 shared
Trandafir, F.
1 / 1 shared
Chart of publication period
2019
2018
2016
2007

Co-Authors (by relevance)

  • Futscher, M. H.
  • Ducati, C.
  • Gu, Q.
  • Lami, V.
  • Cho, C.
  • Ehrler, B.
  • Credgington, D.
  • Zhang, J.
  • Friend, Richard, H.
  • Divitini, G.
  • Kan, B.
  • Vaynzof, Y.
  • Kosasih, F. U.
  • Pearson, A. J.
  • Sadhanala, A.
  • Greenham, N. C.
  • Bakulin, A. A.
  • Chen, Y.
  • Hopper, T. R.
  • Liu, X.-K.
  • Conaghan, P. J.
  • Wu, Y.
  • Gao, F.
  • Cooper, J. F. K.
  • Parnell, A. J.
  • Rechberger, S.
  • Heumüller, T.
  • Min, J.
  • Ade, H.
  • Spiecker, E.
  • Guldi, D. M.
  • Brabec, Cj
  • Sgobba, V.
  • Jiao, X.
  • Alam, M.
  • Fago, Angela
  • Hoogewijs, D.
  • Coletta, M.
  • Weber, Roy E.
  • Doorslaer, S. Van
  • Thijs, L.
  • Moens, L.
  • Ascenzi, P.
  • Vinck, E.
  • Dewilde, S.
  • Bolli, A.
  • Trandafir, F.
OrganizationsLocationPeople

article

Characterization of a globin-coupled oxygen sensor with a gene-regulating function

  • Alam, M.
  • Fago, Angela
  • Wan, X.
  • Hoogewijs, D.
  • Coletta, M.
  • Weber, Roy E.
  • Doorslaer, S. Van
  • Thijs, L.
  • Moens, L.
  • Ascenzi, P.
  • Vinck, E.
  • Dewilde, S.
  • Bolli, A.
  • Trandafir, F.
Abstract

Globin-coupled sensors (GCSs) are multiple-domain transducers,<sup> </sup>consisting of a regulatory globin-like heme-binding domain and<sup> </sup>a linked transducer domain(s). GCSs have been described in both<sup> </sup>Archaea and bacteria. They are generally assumed to bind O<sub>2</sub><sup> </sup>(and perhaps other gaseous ligands) and to transmit a conformational<sup> </sup>change signal through the transducer domain in response to fluctuating<sup> </sup>O<sub>2</sub> levels. In this study, the heme-binding domain, <em>Av</em>GReg178,<sup> </sup>and the full protein, <em>Av</em>GReg of the <em>Azotobacter vinelandii</em> GCS,<sup> </sup>were cloned, expressed, and purified. After purification, the<sup> </sup>heme iron of <em>Av</em>GReg178 was found to bind O<sub>2</sub>. This form was stable<sup> </sup>over many hours. In contrast, the predominant presence of a<sup> </sup>bis-histidine coordinate heme in ferric <em>Av</em>GReg was revealed.<sup> </sup>Differences in the heme pocket structure were also observed<sup> </sup>for the deoxygenated ferrous state of these proteins. The spectra<sup> </sup>showed that the deoxygenated ferrous derivatives of <em>Av</em>GReg178<sup> </sup>and <em>Av</em>GReg are characterized by a penta-coordinate and hexa-coordinate<sup> </sup>heme iron, respectively. O<sub>2</sub> binding isotherms indicate that<sup> </sup><em>Av</em>GReg178 and <em>Av</em>GReg show a high affinity for O<sub>2</sub> with <em>P</em><sub>50</sub> values<sup> </sup>at 20 °C of 0.04 and 0.15 torr, respectively. Kinetics of<sup> </sup>CO binding indicate that <em>Av</em>GReg178 carbonylation conforms to<sup> </sup>a monophasic process, comparable with that of myoglobin, whereas<sup> </sup><em>Av</em>GReg carbonylation conforms to a three-phasic reaction, as<sup> </sup>observed for several proteins with bis-histidine heme iron coordination.<sup> </sup>Besides sensing ligands, <em>in vitro</em> data suggest that <em>Av</em>GReg(178)<sup> </sup>may have a role in O<sub>2</sub>-mediated NO-detoxification, yielding met<em>Av</em>GReg(178)<sup> </sup>and nitrate.<sup> </sup>

Topics
  • Oxygen
  • iron
  • gas chromatography