People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schnelle, Walter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Enhancement of the anomalous Hall effect by distorting the Kagome lattice in an antiferromagnetic materialcitations
- 2023Bismuth-Rich Intermetallic Rods with a Note of Zintl-Phasecitations
- 2023Nano-scale new Heusler compounds NiRh2Sb and CuRh2Sbcitations
- 2022Spiral magnetism, spin flop, and pressure-induced ferromagnetism in the negative charge-transfer-gap insulator Sr$_2$FeO$_4$citations
- 2022Spiral magnetism, spin flop, and pressure-induced ferromagnetism in the negative charge-transfer-gap insulator Sr2FeO4citations
- 2019Complex magnetic phase diagram of metamagnetic MnPtSi
- 2019Complex magnetic phase diagram of metamagnetic MnPtSi.citations
- 2018Local magnetism in MnSiPt rules the chemical bondcitations
- 2018Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd)citations
- 2016Superconductivity in Weyl semimetal candidate MoTe2citations
- 2014Ca3Pt4+xGe13−y and Yb3Pt4Ge13: new derivatives of the Pr3Rh4Sn13 structure typecitations
- 2012Dy₀.₆₄{Dy₅[Fe₂C₉]} : A complex carbide with a composite structurecitations
- 2012Dy0.64Dy5Fe2C9 : A complex carbide with a composite structurecitations
- 2010Thermal, Magnetic, Electronic and Superconducting Properties of Rare-Earth Metal Pentagermanides REGe5 (RE = La, Nd, Sm, Gd) and Synthesis of TbGe5citations
- 2010Valence of cerium ions in selected ternary compounds from the system Ce-Rh-Sn
- 2009Cationic Clathrate I Si46-xPxTey (6.6(1) < y < 7.5(1), x < 2y) : Crystal Structure, Homogeneity Range, and Physical Propertiescitations
- 2009The polar mixed-valent lanthanum iron(II, III) sulfide La3Fe2-δS7citations
- 2008The first silicon-based cationic clathrate III with high thermal stability: Si172-xPxTey (x=2y, y>20).citations
- 2008The layered metal Ti2PTe2citations
- 2007Sn20.5□3.5As22I8: A Largely Disordered Cationic Clathrate with a New Type of Superstructure and Abnormally Low Thermal Conductivitycitations
Places of action
Organizations | Location | People |
---|
article
Enhancement of the anomalous Hall effect by distorting the Kagome lattice in an antiferromagnetic material
Abstract
<jats:p>In topological magnetic materials, the topology of the electronic wave function is strongly coupled to the structure of the magnetic order. In general, ferromagnetic Weyl semimetals generate a strong anomalous Hall conductivity (AHC) due to a large Berry curvature that scales with their magnetization. In contrast, a comparatively small AHC is observed in noncollinear antiferromagnets. We investigated HoAgGe, an antiferromagnetic (AFM) Kagome spin-ice compound, which crystallizes in a hexagonal ZrNiAl-type structure in which Ho atoms are arranged in a distorted Kagome lattice, forming an intermetallic Kagome spin-ice state in the<jats:italic>ab</jats:italic>-plane. It exhibits a large topological Hall resistivity of ~1.6 µΩ-cm at 2.0 K in a field of ~3 T owing to the noncoplanar structure. Interestingly, a total AHC of 2,800 Ω<jats:sup>−1</jats:sup>cm<jats:sup>−1</jats:sup>is observed at ~45 K, i.e., 4<jats:italic>T</jats:italic><jats:sub>N</jats:sub>, which is quite unusual and goes beyond the normal expectation considering HoAgGe as an AFM Kagome spin-ice compound with a<jats:italic>T</jats:italic><jats:sub>N</jats:sub>of ~11 K. We demonstrate further that the AHC below<jats:italic>T</jats:italic><jats:sub>N</jats:sub>results from the nonvanishing Berry curvature generated by the formation of Weyl points under the influence of the external magnetic field, while the skew scattering led by Kagome spins dominates above the<jats:italic>T</jats:italic><jats:sub>N</jats:sub>. These results offer a unique opportunity to study frustration in AFM Kagome lattice compounds.</jats:p>