Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rio, Emmanuelle

  • Google
  • 2
  • 10
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Hierarchical bubble size distributions in coarsening wet liquid foams19citations
  • 2023Hierarchical bubble size distributions in coarsening wet liquid foams19citations

Places of action

Chart of shared publication
Salonen, Anniina
2 / 6 shared
Pasquet, Marina
2 / 2 shared
Mukherjee, Arnab
2 / 5 shared
Pitois, Olivier
2 / 16 shared
Requier, Alice
2 / 2 shared
Cohen-Addad, Sylvie
2 / 9 shared
Langevin, Dominique
2 / 5 shared
Höhler, Reinhard
2 / 5 shared
Galvani, Nicolò
2 / 2 shared
Durian, Douglas
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Salonen, Anniina
  • Pasquet, Marina
  • Mukherjee, Arnab
  • Pitois, Olivier
  • Requier, Alice
  • Cohen-Addad, Sylvie
  • Langevin, Dominique
  • Höhler, Reinhard
  • Galvani, Nicolò
  • Durian, Douglas
OrganizationsLocationPeople

article

Hierarchical bubble size distributions in coarsening wet liquid foams

  • Salonen, Anniina
  • Pasquet, Marina
  • Mukherjee, Arnab
  • Pitois, Olivier
  • Requier, Alice
  • Cohen-Addad, Sylvie
  • Rio, Emmanuelle
  • Langevin, Dominique
  • Höhler, Reinhard
  • Galvani, Nicolò
Abstract

<jats:p>Coarsening of two-phase systems is crucial for the stability of dense particle packings such as alloys, foams, emulsions, or supersaturated solutions. Mean field theories predict an asymptotic scaling state with a broad particle size distribution. Aqueous foams are good model systems for investigations of coarsening-induced structures, because the continuous liquid as well as the dispersed gas phases are uniform and isotropic. We present coarsening experiments on wet foams, with liquid fractions up to their unjamming point and beyond, that are performed under microgravity to avoid gravitational drainage. As time elapses, a self-similar regime is reached where the normalized bubble size distribution is invariant. Unexpectedly, the distribution features an excess of small roaming bubbles, mobile within the network of jammed larger bubbles. These roaming bubbles are reminiscent of rattlers in granular materials (grains not subjected to contact forces). We identify a critical liquid fraction<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msup><mml:mi>ϕ</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math></jats:inline-formula>, above which the bubble assembly unjams and the two bubble populations merge into a single narrow distribution of bubbly liquids. Unexpectedly,<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msup><mml:mi>ϕ</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math></jats:inline-formula>is larger than the random close packing fraction of the foam<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>ϕ</mml:mi><mml:mrow><mml:mi mathvariant="italic">rcp</mml:mi></mml:mrow></mml:msub></mml:math></jats:inline-formula>. This is because, between<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>ϕ</mml:mi><mml:mrow><mml:mi mathvariant="italic">rcp</mml:mi></mml:mrow></mml:msub></mml:math></jats:inline-formula>and<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msup><mml:mi>ϕ</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math></jats:inline-formula>, the large bubbles remain connected due to a weak adhesion between bubbles. We present models that identify the physical mechanisms explaining our observations. We propose a new comprehensive view of the coarsening phenomenon in wet foams. Our results should be applicable to other phase-separating systems and they may also help to control the elaboration of solid foams with hierarchical structures.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • experiment
  • random
  • isotropic
  • gas phase