Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yin, Kaiyang

  • Google
  • 3
  • 19
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Hierarchical structure formation by crystal growth-front instabilities during ice templating14citations
  • 2023Manufacturing size effect on the structural and mechanical properties of additively manufactured Ti-6Al-4V microbeams15citations
  • 20222D numerical simulation of auxetic metamaterials based on force and deformation consistency5citations

Places of action

Chart of shared publication
Trivedi, Rohit
1 / 8 shared
Littles, Louise S.
1 / 1 shared
Wegst, Ulrike G. K.
1 / 1 shared
Fischer, Frank
1 / 8 shared
Cao, Bo
1 / 1 shared
Keckes, Jozef
1 / 41 shared
Todt, Juraj
1 / 24 shared
Gutmann, Florian
2 / 11 shared
Hiermaier, Stefan
2 / 23 shared
Grübel, Nadira
1 / 1 shared
Pfaff, Aron
2 / 17 shared
Ganzenmüller, Georg C.
1 / 2 shared
Eberl, Christoph
1 / 6 shared
Tunçay, Hasan Furkan
1 / 1 shared
Roth, Antonina
2 / 2 shared
Eberl, Chris
1 / 8 shared
Hild, François
1 / 132 shared
Ganzenmüller, Georg
1 / 7 shared
Jakkula, Puneeth
1 / 5 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Trivedi, Rohit
  • Littles, Louise S.
  • Wegst, Ulrike G. K.
  • Fischer, Frank
  • Cao, Bo
  • Keckes, Jozef
  • Todt, Juraj
  • Gutmann, Florian
  • Hiermaier, Stefan
  • Grübel, Nadira
  • Pfaff, Aron
  • Ganzenmüller, Georg C.
  • Eberl, Christoph
  • Tunçay, Hasan Furkan
  • Roth, Antonina
  • Eberl, Chris
  • Hild, François
  • Ganzenmüller, Georg
  • Jakkula, Puneeth
OrganizationsLocationPeople

article

Hierarchical structure formation by crystal growth-front instabilities during ice templating

  • Trivedi, Rohit
  • Littles, Louise S.
  • Yin, Kaiyang
  • Wegst, Ulrike G. K.
Abstract

<jats:p>Directional solidification of aqueous solutions and slurries in a temperature gradient is widely used to produce cellular materials through a phase separation of solutes or suspended particles between growing ice lamellae. While this process has analogies to the directional solidification of metallurgical alloys, it forms very different hierarchical structures. The resulting honeycomb-like porosity of freeze-cast materials consists of regularly spaced, lamellar cell walls which frequently exhibit unilateral surface features of morphological complexity reminiscent of living forms, all of which are unknown in metallurgical structures. While the strong anisotropy of ice-crystal growth has been hypothesized to play a role in shaping those structures, the mechanism by which they form has remained elusive. By directionally freezing binary water mixtures containing small solutes obeying Fickian diffusion, and phase-field modeling of those experiments, we reveal how those structures form. We show that the flat side of lamellae forms because of slow faceted ice-crystal growth along the c-axis, while weakly anisotropic fast growth in other directions, including the basal plane, is responsible for the unilateral features. Diffusion-controlled morphological primary instabilities on the solid-liquid interface form a cellular structure on the atomically rough side of the lamellae, which template regularly spaced “ridges” while secondary instabilities of this structure are responsible for the more complex features. Collating the results, we obtain a scaling law for the lamellar spacing,  <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mi>λ</mml:mi><mml:mo>∼</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>V</mml:mi><mml:mi>G</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></jats:inline-formula> , where<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>V</mml:mi></mml:math></jats:inline-formula>and<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>G</mml:mi></mml:math></jats:inline-formula>are the local growth rate and temperature gradient, respectively.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • experiment
  • anisotropic
  • porosity
  • lamellae
  • directional solidification